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Abstract

As African countries urbanize, migrants from disparate cultures are meeting and working

in close proximity in burgeoning cities. A literature in political economy suggests ethnic

diversity might limit economic growth and increase con�ict, while a long tradition in urban

economics highlights the bene�ts of density and agglomeration. How does ethnic diversity

impact the returns to urbanization in Africa? Using historical information on ethnic diversity

and plausibly exogenous shocks to regional productivity, I study how the ethnic mix of

regions a�ects city growth and development. I model ethnic diversity as a labor supply

problem for growing cities, where regions must draw labor from surrounding areas, trading

o� agglomeration bene�ts with the congestion force of potential con�ict arising from a diverse

mix of workers. I show that cities that emerge in more ethnically homogeneous regions

bene�t from higher light density and lower con�ict today. I then explore the implications of

these labor supply constraints for contemporary climate-induced migration.

*Working Draft, Please Do Not Circulate
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1 Introduction

Africa is marked by its diversity. Nigeria alone contains upwards of 300 ethnic groups and

languages. In turn urbanization in Africa has brought together an array of cultures in

large, dense cities like Lagos, Addis Ababa and Kinshasa. Work in the political economy of

development has pointed to Africa's ethnic diversity as a source of con�ict, where groups

compete for resources and political power within colonial borders. At the same time, work

in urban economics stresses the many bene�ts of dense cities, and developed states often

boast large cosmopolitan cities as growth centers.

Given these competing narratives across �elds about diversity, density and growth, a

natural question is: does diversity help or hinder development in African cities? We may

think that the positive bene�ts of ethnic diversity outweigh the negatives. Diversity may

drive city growth through the love of variety or ethnicity-speci�c knowledge and ideas that

boost technological change (Montalvo and Reynal-Querol, 2021; Mueller et al., 2022; Ashraf

and Galor, 2013). On the other hand, ethnic diversity may work against agglomeration as a

congestion force, dampening the returns to density by increasing the probability of con�ict or

limiting the productivity of team-based labor (Hjort, 2014). Lastly there may be size e�ects.

Perhaps large cities are able to manage their ethnic diversity through workers' segregated

sorting or �rm-ethnicity specialization, producing an inverted U-shaped relationship between

diversity and growth.

To explore the e�ect of diversity on city development, I compare the trajectories of di�er-

ent urban centers that emerged in regions with more or less ethnic heterogeneity. I leverage

regional productivity shocks from the colonial era to create exogenous variation in a region's

propensity to become a city, unrelated to its underlying ethnic make-up. In particular I

leverage the fact that cities were more likely to emerge near colonial rail lines built along

the least-cost path between a coastal town and an inland resource. As a second identi�ca-

tion strategy, I use portage sites along inland rivers as an instrument for contemporary city

location. In a second stage I measure the impact of regional diversity in a city on nighttime

light density and con�ict intensity.

I �nd that cities that emerged in more diverse locations have lower nighttime light density

and more con�ict today, suggesting that city growth is constrained by the ethnic mix of the

labor supply they draw from. This �nding motivates a model of urban growth in which

urban centers must draw workers from neighboring regions. Due to migration costs, cities

are constrained to drawing labor supply from nearby areas, which may be more or less

diverse ex-ante. Cities trade-o� demand for new workers and the agglomeration bene�ts of

density with a congestion force of ethnic diversity, measured by the ethnic fractionalization

of the urban center.
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Figure 1: Example of City and Worker Location with 3 Ethnic Groups

Note: Workers are uniformly distributed, but total ethnic group sizes may vary. The size of the population that
move to a is governed by the o�ered wage p which determines the catchment area for the city.

2 City Growth, Ethnic Diversity and Labor Supply

As a motivation for the empirical approach and the spatial model, consider a region on a line

with a continuum of potential migrant workers distributed uniformly from 0 to 1. Workers

di�er only by their ethnicity g ∈ (g1, g2, g3). The ethnic groups are spatially segregated

along the line, and may be of di�erent relative sizes. The relative proportions of each

worker type are parametrized by λ1, λ2.

Consider a city a that is placed randomly along this line, and must draw workers from

nearby regions. The city produces a normal good according to ALα, and pays wage p.

Workers must choose whether to migrate to the city at wage p, or take the reservation

wage in their home region. A worker located at x that chooses to move to the city pays a

migration cost proportional to their distance, t(|a− x|).
Ethnic diversity can enter either in the city's production function or in the worker's

migration decision. We can think of a fractionalization index F that measures ethnic diversity

as a function of the proportion of workers that migrate to the city form each group w1, w2, w3.

Examples of this kind of function include the standard fractionalization index F =
∑3

1
wi
L
(1−

wi
L
), or the Her�ndahl-Hirschman Index (HHI) F =

∑3
1(

wi
L
)2.

Diversity index F can be incorporated into production by setting A = ĀLγF−υ. The

diversity can also be incorporated into the worker's decision. Suppose a worker at location x

from group i has gains from migration p− t(|a−x|)− υF . Note that the e�ect of F on pro-

duction or migration may be positive or negative. It may be that ethnic diversity increases

production through the introduction of new ideas, independent of the total agglomeration

bene�ts from density L. Ethnic diversity may also play a negative role by increasing ethnic

con�ict and urban violence in the city, dampening production or reducing the amenity value

for residents.

If ethnic diversity is a negative force, total city production is constrained by the L that

the city is able to recruit for a given wage p. The city's ability to recruit works at a given
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Figure 2: Simulation of City Pro�ts and Location in Linear Region

Note: Simulation with migration cost t = 1, fractionalization index weighted by β = 0.2, production y = L0.3,
and three ethnic groups parsed at 0.3 and 0.6.

wage is is a function of the underlying ethnic diversity in the vicinity of the city, ie. the

placement of a relative to λ1, λ2. A city placed in the middle of the territory of ethnic

group g2 can recruit more workers at a given p due to reduced diversity congestion costs,

relative to a city placed at the border between g2, g3. If city a experiences a shock to total

productivity A, the resulting increase in L is also a function of where the city is located

along the distribution of ethnicities. Figure 2 shows simulations from an example of the

model where a cost of ethnic fractionalization F is imposed on the production function of

city. The �gure shows that as we vary the location of city a along the line, total pro�t of

the city varies. Cities located at the center of ethnic territories bene�t from a homogeneous

worker population and are therefore larger and more pro�table.

My empirical strategy leverages shocks to regional productivity that are exogenous to

the underlying ethnic distribution of workers in the surrounding area. I use these historical

shocks to instrument for where cities are located across space, which amounts to varying

a and comparing development outcomes across cities with di�erent underlying levels of

diversity in their potential labor supply. The example provided above can be extended into

a more general framework, as a spatial equilibrium model with many worker types, many

regions and endgenous amenities. I describe this model in detail in Appendix Section A.
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3 Literature Review

This paper contributes to a literature on the role of diversity in economic development

(Arbatli et al., 2020; Alesina and Ferrara, 2005; Mueller et al., 2022; Esteban et al., 2012;

Gisselquist et al., 2016; Gören, 2014; Adhvaryu et al., 2021). Work in this area has generally

focused on the impact of ethnic diversity at the state or district level, leveraging variation

from colonial borders or redrawn political boundaries to study the e�ect of diversity on either

con�ict, as measured by number of armed con�icts, or economic growth. Papers on Africa in

particular �nd that ethnic diversity, as measured by fractionalization or polarization indexes,

is associated with higher levels of con�ict and lower economic growth.

Montalvo and Reynal-Querol (2021) reconsider this conclusion by focusing their analysis

at the city level rather than the state, �nding a positive correlation between ethnic diversity

and growth. Using geolocated trading markets from Porteous (2019), they suggest that the

positive returns at the local level are driven by cross-ethnic trade. The role of ethnic border-

lands in the facilitation of trade is complex. A fairly large literature in trade suggests that

cultural and ethnic similarity helps to facilitate trade across regions and national borders

(Aker et al., 2014; Melitz and Toubal, 2014). However, if particular ethnic groups specialize

in di�erent goods, we might expect that markets and eventually cities emerged at these

intersections between territories. One of the goals of this paper is to bring causal inference

to this discussion. I add to this previous work by considering the role diversity plays in

dampening bene�ts to agglomeration. By exploiting exogenous variation in city location, I

show how ex-ante diversity may hinder city growth and development.

This paper also contributes to a literature in urban economics that considers the role of

labor supply constraints and labor heterogeneity on city growth and wages (Almagro and

Dominguez-Iino, 2022; Diamond, 2016; Duranton and Puga, 2020; Monte et al., 2018). The

paper by Diamond (2016) considers the e�ect of worker preferences for high-skilled neighbors

on the endogenous amenity value of regions. In this paper, I consider how the ethnicity mix of

workers may produce a kind of endogenous amenity value that impacts migration decisions.

Monte et al. (2018) study the role of transport infrastructure in relieving local labor supply

constraints, which in turn a�ects the bene�ts of productivity shocks. In my paper I study the

role of ethnicity-driven labor supply constraints on a city's ability to bene�t from regional

productivity shocks.

Lastly this paper contributes to a literature on the location of cities, and the role that

path-dependence and geography play in determining where cities emerge (Bleakley and Lin,

2015; Ullman, 1970; Michaels et al., 2012; Bleakley and Lin, 2012; Harari, 2020). In my

paper I leverage the placement of colonial rail lines and geographically determined portage

sites to identify regions that became cities independent of the particular ethnic mix of the

region.
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4 Data

4.1 Ethnic and Linguistic Diversity

To understand the historical distribution of ethnic groups across space, I use a variety of

maps that record the approximate boundaries of ethnic tribes historically across Africa. The

�rst is the Ethnographic Atlas, an anthropological database that charts polygons of historic

ethnic groups across Africa (Murdock, 1967). The second is the �Geo-referencing of ethnic

groups� (GREG) dataset, which was assembled using the Soviet Atlas Narodov Mira (ANM)

(Weidmann et al., 2010). Both of these sources were created by anthropologists in the 1960s,

and are meant to be representative of the precolonial arrangement of ethnic groups across

Africa. These maps have been used by economists to study the impact of cultural traits on

long-term economic outcomes (McGuirk and Nunn, 2024; Lowes, 2017).

I also use the Ethnologue, a database of world languages that includes a map of the

distribution of commonly spoken languages across Africa (Paolillo and Das, 2006; Gershman

and Rivera, 2018). This is a more contemporary source of linguistic variation, and therefore

re�ects sorting of groups overtime. However to the extent that indigenous languages are

persistent and local, we might expect this map to at least partly cohere with the historic

maps. As a check against these sources I create a measure of contemporary ethnic diversity

using georeferenced surveys from the Demographic and Health Surveys, which often ask

questions about the respondent's ethnic background. I also create a county level measure

of diversity using available 10% census data for a subset of African countries which report

ethnicity.

4.2 Population and City Locations

I use three sources of population data at granular spatial levels. Historical data on population

in Africa is limited, and relies on a combination of colonial censuses and interpolation. My

main source is Africapolis, a database of African cities that tracks the spatial distribution

of human settlements greater than 10k people across Africa. Africapolis has a record of

city and town locations and estimated population counts that goes back to 1950 (Heinrigs,

2020). Grids that overlap with the Africapolis layer are marked as cities in my dataset.

I supplement this source with Worldpop data, which provides population counts at 1km

resolution, and the History Database of the Global Environment (HYDE). HYDE provides

spatial data on land use change over time, and includes estimated population counts in

precolonial periods.
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4.3 Development Outcomes

Beyond population counts, my outcomes of interest are levels of development and levels

of con�ict across cities and time. As a granular measure of regional development I use a

harmonized dataset of nighttime lights from DMSP and VIIRS, which has light density across

Africa from 1992 to 2013 (Li et al., 2020). To measure con�ict intensity I use the UCDP

event dataset, which contains georeferenced information on con�ict events from 1975 to 2021

(Sundberg and Melander, 2013). Con�ict events in this data consist of battles between two

organized groups, typically involving the state military and an insurgent group. Of course,

not all con�icts in this dataset are ethnically motivated. While the UCDP data does not

explicitly code con�ict events as ethnically motivated, each battle event is linked to a source

article. In a robustness check I code con�ict events by whether the source article mentions

words such as �ethnic�, �race� or �tribe�.

For each grid, I aggregate an average light density measure for each year between 1992

and 2013, as well as cumulative measures for 1992-1999, 2000-2009 and 2010-2013. For

con�ict events, I create a probability of con�ict measure that represents the probability that

a con�ict event falls within the grid across the period 1975 to 2021. This is simply the

average number of years in which that grid observes a con�ict event. I also calculate the

average number of con�ict deaths across this time period for each grid.

The last development outcome I leverage is colonial railroads. The universe of colonial

rail projects was collected by Jedwab and Moradi (2016).

4.4 DHS Level Outcomes

As another measure of contemporary regional wealth, I take advantage of the geolocated

Demographic and Health Survey (DHS) data from IPUMS. Leveraging all available surveys

from African states, I create a measure of durables consumption at the household level by

taking the principle component of a variety of household assets. This measure provides a

proxy for consumption in a given region, following Gollin et al. (2021). Analysis using this

durables consumption measure is done at the DHS cluster level, rather than using all grid

observations.

4.5 Geographic Variables

In order to create an index of portage site propensity, I use data on major African river

networks from the HydroSHEDS database (Lehner and Grill, 2013). I also use data on

elevation variation across the continent, which is measured with the ruggedness index from

Nunn and Puga (2012). Supplementary geographic information at the grid level includes

malaria ecology (Kiszewski et al., 2004) and soil suitability (Ramankutty et al., 2002).
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5 Empirical Strategy

The empirical strategy takes inspiration from the literature on estimating labor demand

curves from shocks to labor demand (Diamond, 2016; Notowidigdo, 2020) and housing sup-

ply elasticities (Saiz, 2010; Guedes et al., 2023). In this work inverse demand and supply

elasticities are estimated using an interaction between a labor demand shock and a housing

supply constraint.

Initially we are interested in an equation like the following. For each grid, what is the

long-term relationship between diversity, population and GDP?

Log(Y )i = β0 + β1Li + β2Di + β3Li ∗Di +Xi + ϵi (1)

WhereDi captures a historic measure of a region's potential exposure to diverse migrants,

and Li captures a measure of employment density. The interaction of fractionalization and

labor is what we're interested in � how does historic fractionalization a�ect the labor demand

elasticity, and in turn output and productivity?

There are a few things to note about this equation.

1. A historic fractionalization measure will be related to a variety of geographic fundamen-

tals that governed the migration of groups over space and may also a�ect productivity

or GDP

2. If we're using night lights to measure GDP, then this equation is mainly capturing

some facts about urbanization �the relationship between rural productivity and night

lights is more tenuous. (Pérez-Sindín et al., 2021)

3. Di may have direct e�ects on GDP, β2, but it will also move total labor through its

e�ects on labor demand elasticity. Regressing an outcome like GDP/capita obscures

this endogenous relationship that in part governs the selection e�ects taking place

between the initial distribution of groups and today's economic output.

Of course population density is an endogenous variable. Our IV strategy will predict

population density and its interaction by exploiting temporary shocks to regional produc-

tivity ∆Ai that drove labor demand historically, but that are no longer correlated with

unobserved productivity fundamentals today.

In our �rst pass analysis, we'll use a dummy that marks a "city" as our indicator for

employment density. A city is de�ned as a town with more than 10k in population, as

recorded by the Africapolis dataset. This helps us to avoid having to use interpolated

population measures that are in part backed out from light density estimates. Our IV

instruments will predict city locations, allowing us to estimate our parameter of interest β3:

Log(Y )i = β0 + β1Ĉi + β2Di + β3Ĉi ∗Di +Xi + ϵi (2)
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We need our productivity shock ∆Ai to be uncorrelated with unobserved other factors

in ϵi that drive our outcomes of light density, wealth, lights/capita,and con�ict. Note we do

not need that Di is uncorrelated with ∆Ai in this estimation. Our concern will be if we are

missing an interaction term of an unobserved fundamental that is correlated with Ĉi ∗Di.

For example, if Ruggednessi ∗∆Ai is correlated with Ĉi ∗Di and the outcome, we need to

include this term in the estimation.

I split the African continent into equally sized hexagonal grids of approximately 1200km2,

which I use as my regions i. For each grid I aggregate data on con�ict, light density, pop-

ulation across years and the geographic variables including malaria suitability, ruggedness

and soil suitability. Rather than limit the aggregation to data falling within the grid region

itself, I create a bu�er zone with a radius of 50km from each grid, and aggregate population,

lights and geographic data within this area. In the Appendix I do the analysis at other

bu�er distances, including 20km and 100km. A grid is coded as urban if it overlaps with

a city identi�ed in the Africapolis data set. Because the data includes small towns and

settlements, I de�ne a settlement as a city if it hosts greater than 10k people for any year

in the dataset. In some of the analysis that follows, I will restrict to the sample to "new

cities". These are cities that speci�cally emerge in the dataset after 1960, so we can think

of them as colonial or post-colonial settlements, which are the sites we expect to be a�ected

by colonial era shocks.

5.1 Measures of Ethnic Diversity

Using the various ethnic maps, I �rst calculate the density of nearby ethnic groups for each

grid as the number of di�erent groups that intersect within a radius of the grid centroid. I

set the radius at 20, 50 and 100km. Using the same radii, I also calculate a fractionalization

index that measures the share of land area taken up by di�erent ethnicities. In particular it

measures the probability that two randomly placed points in the region land in the territory

of two di�erent ethnic tribes.

In the main results, I will use two diversity measures: the 50km speci�cation of the

Murdock fractionalization index, and the �rst principal component of the fractionalization

measures across data sources including the Murdock map, GREG atlas and Ethnologue (at

the 50km boundary level). Results for other speci�cations are provided in the Appendix.

Both of these measures are standardized in the regression analysis. The correlation between

the various data sources is shown in Table B2. While the measures are indeed correlated

as expected, it's important to note that correlation across data sources only ranges between

0.3 and 0.6, suggesting that at least at a sub-country levels the marked ethnic boundaries

are di�erent across sources.

For the subsample of grids that overlap with available census data from IPUMS Inter-

national I include them in the correlation matrix in Table B3. Across measures we see the
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Figure 3: Examples of Data Visualizations, Nigeria

(a) Murdock Map, 1967 (b) Grid View

(c) Towns/Settlements > 10k, Africapolis (d) Principle Component Fractionalization

higher diversity is correlated with lower county-level ethnic concentration (see equation 16

for how this ethnic concentration measure is calculated in the census data). The relationship

between the contemporary census-measured ethnic diversity and the historical measures of

diversity is suggestive of persistence in ethnic group locations over time, as suggested by

Gershman and Rivera (2018).

5.2 Correlations of Diversity and Development

Figure 4 shows the aggregate relationship between the main measures of ethnic diversity,

light density and population size at the grid level. In particular the graph shows beta

coe�cients from the regression of outcome y on diversity measure D at the grid level, with

country �xed e�ects and controls for malaria, soil suitability, whether the region is a city, and

ruggedness. There's some suggestive evidence of a relationship between light density and

historic ethnic diversity, and a strong relationship between historic diversity and con�ict.

12



Figure 4: Association of Diversity with Lights and Con�ict

Notes: These coe�cients are estimated from the regression y = α + βD + X + υs, where D is a standardized
measure of diversity either Murdock fractionalization or the principle component. Covariates X include malaria
suitability, land suitability and ruggedness. υs are state �xed e�ects. Light Density 2000s is the average light
density for a grid cell from 2000-2009, and Light Density 2010s is the same measure for 2010-2013. Con�ict
probability is the proportion of years where a con�ict event is observed in that grid from 1975-2021. Average
deaths is the average death toll across con�icts occurring in a grid cell across that time period (this is only de�ned
for grids that have a positive con�ict probability). All outcomes are standardized.
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It also appears the grid's that are more historically diverse have lower population in 2010,

while this e�ect is not seen on the historic population measure for 1800. Figure B3 in

the Appendix shows regressions of each independent diversity measure on the average light

density for the years 2000-2013.

These broad patterns seem to match past associations in the literature, which typically

�nd a strong relationship between regional diversity and con�ict, while the relationship

between diversity and growth is mixed, and seems to depend on the size of the analysis

unit (Arbatli et al., 2020; Gören, 2014; Montalvo and Reynal-Querol, 2021). But these

associations don't address the key question about the role of ethnic diversity in city growth.

For this we need to compare regions that have high productivity (potential for city growth),

but di�erent levels of heterogeneity in the prospective local workforce. To do this I use two

identi�cation strategies that attempt to isolate geographic variation in city location, such

that the interaction of the instrument and underlying historic ethnic diversity is unrelated

to unobserved productivity fundamentals. In the �rst strategy, I consider regions that

bene�tted from the placement of a nearby colonial railroad, boosting market access. For

the second strategy I consider regions located near portage sites, which became important

areas for trade in the colonial era.

5.3 Correlations of Diversity and Geographic Covariates

The extreme diversity of ethnic groups and languages across the African continent was set

by a series of hypothesized major population migrations, including the Bantu expansion

from West Africa (3000 BCE to 500 AD) and the Eurasian back�ow into the Horn of Africa

(circa 1000 BCE). Demographers believe these migrations followed a semi-founder pattern,

where environmental factors determined how long groups stayed in particular places, before

continuing south through the continent (Fortes-Lima et al., 2024; Michalopoulos, 2012; Semo

et al., 2020). Geographical factors largely determined the routes these migrations, and where

groups may have splintered o�.

This means that ethnic diversity will also necessarily be a function of geographical factors

such as elevation, ruggedness, land suitability, temperature and distance to rivers. This

should be true at various spatial resolutions, and it's not obious if the correlation is more or

less strong for state, subdistrict, or more granular measures of ethnic diversity. Table 1 shows

regressions of our various historic measures of ethnic diversity on geographic covariates. We

see that at our grid-cell level, higher ethnic diversity is associated with higher ruggedness,

closeness to rivers, malaria suitability and agricultural suitability. We control for all these

factors and their interactions with the instrument throughout the analysis.

14



Figure 5: African Diversity and Historical Migrations

(a) Language Families (b) (Schlebusch and Jakobsson, 2018)

Table 1: Geography and Ethnic Diversity

PC Fract Murd Fract Murd Count Greg Count Lang.

Dist River -0.229 -0.157 -0.175 -0.426 0.080
[0.005]∗∗∗ [0.006]∗∗∗ [0.006]∗∗∗ [0.014]∗∗∗ [0.002]∗∗∗

Dist Coast 0.079 0.001 0.020 0.234 -0.029
[0.005]∗∗∗ [0.006] [0.006]∗∗∗ [0.016]∗∗∗ [0.002]∗∗∗

Malaria Suit. 0.135 0.083 0.121 0.242 -0.036
[0.005]∗∗∗ [0.005]∗∗∗ [0.006]∗∗∗ [0.014]∗∗∗ [0.002]∗∗∗

Pastoral Suit -0.055 -0.021 -0.044 -0.022 -0.013
[0.004]∗∗∗ [0.004]∗∗∗ [0.005]∗∗∗ [0.012]∗ [0.002]∗∗∗

Agricultural Suit 0.186 0.175 0.219 0.247 -0.069
[0.006]∗∗∗ [0.006]∗∗∗ [0.007]∗∗∗ [0.018]∗∗∗ [0.002]∗∗∗

Past*Agr Suit 0.027 0.033 0.019 0.136 -0.016
[0.004]∗∗∗ [0.004]∗∗∗ [0.004]∗∗∗ [0.011]∗∗∗ [0.001]∗∗∗

Elevation -0.082 -0.061 -0.056 -0.266 0.021
[0.005]∗∗∗ [0.005]∗∗∗ [0.006]∗∗∗ [0.012]∗∗∗ [0.002]∗∗∗

Ruggedness 0.086 0.034 0.057 0.266 -0.010
[0.004]∗∗∗ [0.004]∗∗∗ [0.004]∗∗∗ [0.011]∗∗∗ [0.001]∗∗∗

Mean Dep. -0.018 -0.013 2.056 2.789 0.704
Observations 81,073 88,714 88,714 85,412 88,714

Notes: The fractionalization measures are standardized. The regressions include country �xed e�ects.
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5.4 IV Strategy 1: Railroad Towns and Least-Cost Path

To study the e�ect of regional ethnic diversity on city growth and urban con�ict, an ideal

experiment might randomly place cities in di�erent locations with di�erent ex-ante levels

of ethnic diversity. To approximate this idealized setting I leverage regional productivity

shocks which increase the probability of a city forming in a given region, independent of

the underlying distribution of ethnic groups. In particular, I consider the construction of

colonial railroads, which boosted the fundamental productivity for all regions along the the

railroad path by suddenly granting access to distant markets. Colonial railroads were often

built to connect coastlines to a particular resource in the interior of the country. An example

is the British Uganda railway, which connected Mombasa on the coast to Lake Victoria for

geopolitical reasons. This railway incidentally also increased the productivity of regions

that lay along the least-cost path between these points. Indeed human settlements grew

everywhere along the railway, and the railway's path within Kenya predicts the location of

contemporary Kenyan cities (Jedwab et al., 2017).

Depending on their location along the railway path, these emerging cities have di�erent

exposure to an ethnically diverse population of potential migrants. By using the placement of

railways as an instrument for contemporary city location, I can compare the development of

cities with di�erent levels of regional ethnic diversity along the same rail line. Figure 6 shows

a map of constructed colonial railways collected by Jedwab and Moradi (2016). Taking each

grid's distance from the nearest rail line, I look at the association between distance to the

nearest line and whether or not that grid is a city, as well as the grid's population. Figure 7

shows that being within 50km of a colonial rail line is highly predictive of city location and

size. The relationship is also nonlinear. Figure 8 shows a regression discontinuity design

by distance to nearest rail. Locations 20km or nearer to a rail are at the right side of the

cut-o�, while regions further away are on the left. We see that the probability of being a

new city (that is, a city that emerged after 1950) spikes once a region is within 20km of a

rail.

I use a two stage least squares strategy in which the distance of a grid to a colonial

rail-line is used as an instrument for city location. Grids that are nearby colonial rail lines

are more likely to become cities over time. Di�erent grids have di�erent levels of ethnic

diversity. I additionally instrument for the interaction between my city dummy and ethnic

diversity using the interaction of ethnic diversity with the distance to the rail line. This

gives me 2 �rst-stage equations:

Ci = α+ β1Disti + υr + ωs + ϵi (3)

Ci ∗Di = α+ β1Disti + β2Disti ∗Di + υr + ωs + ϵi (4)

Here Ci represents a dummy for whether a grid is a city, Di represents the grid's ethnic

diversity, Disti is the grid's distance to the nearest colonial railway, and υr, ωs control for

16



Figure 6: Colonial rail lines (Jedwab et al., 2017)

railway and state �xed e�ects respectively.

I can then estimate a second stage equation to examine the e�ect of a city placed in a

more or less diverse area on an outcome Yi. In the second stage we are interested in the

coe�cient β3 from the equation:

Yi = α+ β1Ĉi + β2Di + β3Ĉi ∗Di +Xi + ϵi (5)

Where Ĉi represents the instrumented value from equation 3 and Ĉi ∗Di represents the

instrumented value from equation 4. Xi includes the grid level controls malaria suitability,

soil suitability, elevation and ruggedness.

What is the relationship between the rail line placement and a region's ethnic diver-

sity? It may be the case for example that a rail path intentionally moved through more

homogeneous ethnic areas speci�cally to avoid destabilizing con�ict. There is indeed some

signi�cant association between distance to the rail line and a grid's fractionalization index.

Figure 9 shows linear polynomials of the association between rail line distance and fraction-

alization for all grids within 200km of a rail line. Table 2 shows a regression of the distance

to the rail line on Murdock fractionalization, controlling for geographic fundamentals, state

and rail �xed e�ects.
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Figure 7: Local Polynomial of City Formation by Dist to Rail (km)

(a) Prob. of City Location (b) City Pop. 2010

Figure 8: RD Plot at 20km Rail Distance and New City Probability

Note: Probability that grid is new city by rail distance (km), where 0 is 20km. Controls include river/coast
distance, elevation/ruggedness, suitability (land/malaria/tsetse/pastoral) and historical population.
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Figure 9: Local Polynomial of Ethnic Fractionalization by Distance to Rail (km)

(a) Murdock Fractionalization (b) PC Fractionalization

Table 2: Fractionalization and Distance to Rail

Rail Dist Rail Dist Rail Dist Rail Dist

Murd Fract 2.509 2.157 3.004 2.635
[2.054] [2.234] [2.078] [2.256]

Coast Distance 4.996 4.300 5.829 5.265
[0.639]∗∗∗ [0.926]∗∗∗ [0.732]∗∗∗ [1.062]∗∗∗

River Distance 2.055 2.987 2.338 3.151
[0.488]∗∗∗ [0.594]∗∗∗ [0.499]∗∗∗ [0.605]∗∗∗

Elevation -0.008 -0.007 -0.010 -0.009
[0.002]∗∗∗ [0.002]∗∗∗ [0.002]∗∗∗ [0.003]∗∗∗

Ruggedness 2.152 1.950 2.448 2.279
[0.567]∗∗∗ [0.603]∗∗∗ [0.576]∗∗∗ [0.604]∗∗∗

Land Suit 4.763 2.947
[2.704]∗ [3.264]

Malaria Suit -0.133 -0.317
[0.096] [0.132]∗∗

Tsetse Suit 0.178 3.534
[5.127] [6.165]

Agricultural Suit -0.185 -0.702
[0.303] [0.393]∗

Animal Suit -0.364 -0.383
[0.232] [0.291]

Pastoral Suit 0.271 0.986
[0.259] [0.316]∗∗∗

HunterGatherer Suit 0.310 0.324
[0.278] [0.391]

Constant -0.000 0.000 0.000 0.000
[0.490] [0.483] [0.492] [0.484]

Rail FE N Y N Y
Dist to Rail km <100km <100km <100km <100km
Observations 18,517 18,517 18,263 18,263

Notes: Fractionalization measures are standardized. The regressions include a variety
of geographic and ecological controls, as well as country and rail �xed e�ects. Conley
standard errors with spatial correlation at 20km. Sample is cut at 100km within a rail
line.
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5.5 IV Strategy 2: Portage Sites

A second strategy leverages the geographic placement of portage sites (Bleakley and Lin,

2012). Maritime trade often requires ships to move inland from the coast along navigable

rivers. Sharp changes in elevation along rivers create rapids and waterfalls, preventing large

ships from traveling further. It becomes necessary to create infrastructure at the point at

which a river is no longer navigable to transfer goods from ships to land transport. Prior

work in the US has shown that many US cities developed along the Atlantic Seaboard Fall

Line, which creates a point of elevation change at which inland rivers are no longer navigable

on the east coast (Bleakley and Lin, 2012).

Using the same logic, I use data on land ruggedness and the river network to identify

points along African river systems at which large elevation changes occur. If portage sites

predict town locations, then sites that are rugged and near rivers are more likely to have

a town develop over time, as maritime travel became more prevalent in colonial Africa. I

create a portage site score as the interaction between a region's distance from a river and its

ruggedness level. A high score represents a higher degree of ruggedness and a region closer

to a river. Figure 10 shows a visual example for the Democratic Republic of Congo. Portage

scores are higher along the river network, and importantly, also vary along a particular river.

The mouth of the river in the West shows high portage scores near where the Congo River

has large rapids that precede the city of Kinshasa.

I use the portage score as an instrument to predict historical city location. Because

these sites only became relevant during the colonial period (due to increased coast-to-inland

transport), these sites are likely orthogonal to the interaction between city locations and the

distribution of historical ethnic group homelands. Before this time, African river trade was

often conducted by canoe, which were better able to navigate rapids and other elevation

changes (Smith, 1970). Using the interaction of ruggedness and the river network helps to

move away from the association between ruggedness and ethnic boundary lines discussed by

Michalopoulos (2012). Particular features of ruggedness such as mountain ranges are likely

to predict where tribes or groups begin and end, in turn a�ecting the underlying diversity of

rugged regions. By isolating our analysis to river-adjacent ruggedness, we hopefully isolate

elevation changes that predict waterfalls and rapids, which are less likely to have determined

ancient migratory patterns and the initial development of ethnolinguistic diversity.

Figure 11 shows how portage score positively predicts city location and population. In

the Appendix I test my portage score instrument by comparing it to hydrological data on

river �ows, rapids and a georeferenced sample of known portage towns in Africa.

Using the portage score Pi for a given grid i, I can instrument for city location and the

interaction of city location and ethnic diversity in a similar fashion as in the rail design:

Ci = α+ β1Pi + ωs + ϵi (6)
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Figure 10: Grid-Level Portage Score for DRC

(a) DRC Portage Score (b) DRC City Locations

Ci ∗Di = α+ β1Pi + β2Pi ∗Di + ωs + ϵi (7)

Here Ci represents a dummy for whether a grid is a city, Di represents the grid's ethnic

diversity, Pi is the grid's portage site score, and ωs controls for state �xed e�ects.

I can then estimate a second stage equation to examine the e�ect of a portage city located

in a more or less diverse area on an outcome Yi. In the second stage we are interested in

the coe�cient β3 from the equation:

Yi = α+ β1Z1i + β2Di + β3Z2i +Xi + ϵi (8)

Where Z1i represents the instrumented value from equation 6 and Z2i represents the

instrumented value from equation 7. Xi includes the grid level controls malaria suitability

and soil suitability.
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Figure 11: Local Polynomial of City Formation by Portage Score

(a) Prob. of City Location (b) City Pop. 2010

Again we might be concerned about the association between the portage locations and

the historic distribution of ethnic groups. Table 3 shows regressions of the portage score

measure on the fractionalization indexes. We see that higher portage scores are associated

with higher diversity grids, which is going in the opposite direction as the rail city predictor

(where further distance from the rail was associated with lower city probability and higher

diversity). A 1-unit increase in the portage score associated with a .03 - .09 standard

deviation increase in fractionalization.

Table 3: Fractionalization and Portage Probability

Murd Murd Murd Murd PC PC PC PC

Portage Score 0.003 0.004 -0.105 -0.103 0.107 0.095 0.014 0.008
[0.011] [0.011] [0.014]∗∗∗ [0.014]∗∗∗ [0.010]∗∗∗ [0.010]∗∗∗ [0.013] [0.013]

Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
River FE N Y N Y N Y N Y
Mean Dep. 0.306 0.306 0.386 0.386 0.397 0.397 0.497 0.497
Observations 37,304 37,304 23,000 23,000 36,741 36,741 22,855 22,855

Notes: The fractionalization measures are standardized. The regressions include malaria suitability, land suitability, historic population,
ruggedess and river distance as controls, as well as country �xed e�ects.

6 Results

Using both instruments, I �rst show the predictive power of the instrument on city location

(whether a grid is a city), and then I show the second stage results from equation 5 and

equation 8 for rail and portage score respectively.
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6.1 Rail IV Results

6.1.1 First Stage

Table 4 shows the results of the �rst-stage regression of the city dummy on distance to a

colonial rail line in equation 3. This suggests that within a given bandwidth around colonial

rail lines, city formation is highly predicted by distance to the rail. This pattern is similar

to what is shown in Figure 7, which shows a spike in the probability of city formation near

colonial railways. For the rest of this analysis, we restrict the sample to locations within

300km and 100km of a colonial rail line. Table 5 shows the results of the second �rst stag

regression on the interaction of our city dummy with ethnic fractionalization.

6.1.2 Second Stage

Table 6 shows the e�ect of an instrumented city-ethnic diversity interaction on light density

for the years 2010-2013. Table B4 shows the same regression for light density aggregated

in the years 2000-2009. In columns 1 and 2 of Table 6 we see that having a city placed

in a grid with higher Murdock ethnic diversity show lower nighttime light density. The

relationship is also seen in the PC measure of diversity for the lights outcome variable in

years 2010-2013. Table 7 shows the e�ect on con�ict outcomes. Conditional on having

a city located in a grid, a higher level of ethnic diversity is associated with higher con�ict

probability between the years 1975 and 2021. This relationship is signi�cant for the principle

component measure of diversity. Table B5 shows the e�ect on number of con�ict deaths,

conditional on experiencing con�ict during this period. The coe�cients are positive, but not

signi�cant for the city*diversity interactions. Using the distance to colonial rail instrument,

cities located in more diverse regions have lower light density and higher con�ict incidence.

Table 8 shows the results for durables consumption. The observations now are at the DHS

household level, rather than the grid-level. Cities placed in more fractionalized locations have

consistently lower levels of durables consumption.
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Table 4: Rail IV - Predict City

City City City City

Rail Distance (km) -0.005 -0.005 -0.004 -0.004
[0.000]∗∗∗ [0.000]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗

Rail*Murd Fract 0.001 0.001 0.001 0.001
[0.001]∗ [0.001]∗ [0.001]∗ [0.001]∗

Coast Distance -0.042 -0.019 -0.042 -0.019
[0.009]∗∗∗ [0.011]∗ [0.009]∗∗∗ [0.011]∗

River Distance -0.010 -0.014 -0.010 -0.015
[0.005]∗ [0.006]∗∗ [0.005]∗ [0.006]∗∗

Elevation 0.000 0.000 0.000 0.000
[0.000]∗∗∗ [0.000] [0.000]∗∗∗ [0.000]

Ruggedness 0.008 0.018 0.018 0.030
[0.008] [0.008]∗∗ [0.015] [0.014]∗∗

Land Suit 0.086 0.035 0.104 0.041
[0.031]∗∗∗ [0.036] [0.057]∗ [0.055]

Malaria Suit 0.003 -0.001 0.003 -0.001
[0.001]∗∗∗ [0.001] [0.001]∗∗∗ [0.001]

Tsetse Suit -0.089 -0.182 -0.080 -0.166
[0.056] [0.062]∗∗∗ [0.086] [0.086]∗

Agricultural Suit 0.008 0.008 0.008 0.008
[0.003]∗∗ [0.004]∗∗ [0.003]∗∗ [0.004]∗∗

Animal Suit 0.000 -0.005 0.000 -0.005
[0.002] [0.003]∗∗ [0.002] [0.003]∗∗

Pastoral Suit -0.008 -0.008 -0.008 -0.008
[0.003]∗∗∗ [0.003]∗∗ [0.003]∗∗∗ [0.003]∗∗

HunterGatherer Suit 0.011 0.009 0.011 0.009
[0.003]∗∗∗ [0.004]∗∗ [0.003]∗∗∗ [0.004]∗∗

Rail*LandSuit -0.001 -0.000
[0.002] [0.001]

Rail*Elevation 0.000 -0.000
[0.000] [0.000]

Rail*Ruggedness -0.000 -0.000
[0.000] [0.000]

Rail*TsetseSuit -0.000 -0.001
[0.002] [0.002]

Constant 0.000 0.000 0.000 0.000
[0.005] [0.004] [0.005] [0.004]

Mean Dep. Var 0.170 0.170 0.170 0.170
Rail FE N Y N Y
Dist to Rail km <50km <50km <50km <50km
Observations 9,753 9,753 9,753 9,753

Notes: All regressions include country �xed e�ects, columsn 2 and 4 include rail �xed
e�ects. Fractionalization measures are standardized, and de�ned using a 50km bu�er
from the grid centroid. Conley standard errors with spatial correlation at 20km.
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Table 5: Rail IV - Predict City*Diversity

City_Frac City_Frac City_Frac City_Frac

Rail Distance (km) -0.002 -0.002 -0.002 -0.002
[0.000]∗∗∗ [0.000]∗∗∗ [0.001]∗∗∗ [0.001]∗∗∗

Rail*Murd Fract 0.004 0.003 0.004 0.003
[0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗∗∗

Coast Distance -0.012 -0.001 -0.012 -0.001
[0.004]∗∗∗ [0.005] [0.004]∗∗∗ [0.005]

River Distance -0.005 -0.004 -0.005 -0.004
[0.002]∗∗ [0.003] [0.002]∗∗ [0.003]

Elevation 0.000 -0.000 0.000 0.000
[0.000]∗∗∗ [0.000] [0.000]∗ [0.000]

Ruggedness 0.008 0.011 0.015 0.019
[0.004]∗∗ [0.004]∗∗∗ [0.008]∗ [0.007]∗∗∗

Land Suit 0.014 -0.007 0.038 0.011
[0.015] [0.017] [0.027] [0.025]

Malaria Suit 0.001 -0.001 0.001 -0.001
[0.000]∗ [0.001] [0.000]∗ [0.001]

Tsetse Suit -0.065 -0.084 -0.056 -0.071
[0.026]∗∗ [0.030]∗∗∗ [0.040] [0.039]∗

Agricultural Suit 0.002 0.001 0.002 0.001
[0.002] [0.002] [0.002] [0.002]

Animal Suit 0.000 -0.001 0.000 -0.001
[0.001] [0.001] [0.001] [0.001]

Pastoral Suit -0.003 -0.005 -0.003 -0.005
[0.001]∗∗ [0.001]∗∗∗ [0.001]∗∗ [0.001]∗∗∗

HunterGatherer Suit 0.008 0.005 0.007 0.005
[0.001]∗∗∗ [0.002]∗∗ [0.001]∗∗∗ [0.002]∗∗

Rail*LandSuit -0.001 -0.001
[0.001] [0.001]

Rail*Elevation 0.000 -0.000
[0.000] [0.000]

Rail*Ruggedness -0.000 -0.000
[0.000] [0.000]

Rail*TsetseSuit -0.000 -0.000
[0.001] [0.001]

Constant 0.000 0.000 0.000 0.000
[0.002] [0.002] [0.002] [0.002]

Mean Dep. Var 0.060 0.060 0.060 0.060
Rail FE N Y N Y
Dist to Rail km <50km <50km <50km <50km
Observations 9,753 9,753 9,753 9,753

Notes: All regressions include country �xed e�ects, columsn 2 and 4 include rail �xed e�ects.
Fractionalization measures are standardized, and de�ned using a 50km bu�er from the grid
centroid. Conley standard errors with spatial correlation at 20km.
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Table 6: 2SLS Rail IV - Light Density 2010s

Lights Lights Lights Lights Lights Lights Lights Lights

City*Murd Fract -0.328 -0.320 -0.246 -0.241
[0.090]∗∗∗ [0.105]∗∗∗ [0.101]∗∗ [0.106]∗∗

Murd Fract 0.049 0.039 0.033 0.028
[0.013]∗∗∗ [0.015]∗∗∗ [0.018]∗ [0.018]

City 0.247 -0.062 1.635 1.660 0.317 -0.018 1.656 1.675
[0.151] [0.203] [0.118]∗∗∗ [0.117]∗∗∗ [0.137]∗∗ [0.192] [0.111]∗∗∗ [0.109]∗∗∗

City*PC Fract -0.348 -0.391 -0.418 -0.355
[0.084]∗∗∗ [0.109]∗∗∗ [0.141]∗∗∗ [0.148]∗∗

PC Fract 0.097 0.099 0.131 0.115
[0.019]∗∗∗ [0.023]∗∗∗ [0.039]∗∗∗ [0.037]∗∗∗

Rail FE N Y N Y N Y N Y
Dist to Rail <300km <300km <100km <100km <300km <300km <100km <100km
F-stat 126 83 170 98 115 58 30 30
Mean Dep. Var -0.039 -0.039 0.012 0.012 -0.039 -0.039 0.012 0.012
Observations 40,262 40,262 17,275 17,275 39,096 39,096 16,788 16,788

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country and rail �xed e�ects. Fractionalization measures
are standardized, and de�ned using a 50km bu�er from the grid centroid. Light density measures are also standardized after averaging across years
2000-2009 and 2010-2013.

Table 7: 2SLS Rail IV - Prob. Con�ict

P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict)

City*Murd Fract -0.004 0.001 0.005 0.006
[0.008] [0.008] [0.007] [0.008]

Murd Fract 0.003 0.000 0.000 -0.000
[0.001]∗∗ [0.001] [0.001] [0.001]

City -0.063 -0.018 0.048 0.057 -0.054 -0.015 0.046 0.052
[0.013]∗∗∗ [0.013] [0.008]∗∗∗ [0.008]∗∗∗ [0.012]∗∗∗ [0.013] [0.007]∗∗∗ [0.007]∗∗∗

City*PC Fract -0.002 0.012 0.023 0.034
[0.008] [0.009] [0.011]∗∗ [0.012]∗∗∗

PC Fract 0.006 0.000 -0.001 -0.007
[0.002]∗∗∗ [0.002] [0.003] [0.003]∗∗

Rail FE N Y N Y N Y N Y
Dist to Rail <300km <300km <100km <100km <300km <300km <100km <100km
F-stat 126 83 170 98 115 58 30 30
Mean Dep. Var 0.013 0.013 0.012 0.012 0.013 0.013 0.012 0.012
Observations 40,262 40,262 17,275 17,275 39,096 39,096 16,788 16,788

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country and rail �xed e�ects. Fractionalization measures are
standardized, and de�ned using a 50km bu�er from the grid centroid. Prob. con�ict is de�ned as the proportion of years in which the grid experienced a con�ict
across 1975-2021.
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Table 8: 2SLS Rail IV - DHS Durables Consumption

Durables Durables Durables Durables Durables Durables Durables Durables

City*Murd Fract -0.142 -0.141 -0.124 -0.152
[0.011]∗∗∗ [0.014]∗∗∗ [0.016]∗∗∗ [0.019]∗∗∗

Murd Fract 0.044 0.046 0.045 0.063
[0.007]∗∗∗ [0.008]∗∗∗ [0.012]∗∗∗ [0.013]∗∗∗

City 2.185 2.275 2.148 2.123 2.262 2.239 2.202 2.159
[0.012]∗∗∗ [0.020]∗∗∗ [0.015]∗∗∗ [0.019]∗∗∗ [0.013]∗∗∗ [0.019]∗∗∗ [0.015]∗∗∗ [0.019]∗∗∗

City*PC Fract -0.264 -0.098 -0.219 -0.204
[0.010]∗∗∗ [0.014]∗∗∗ [0.016]∗∗∗ [0.018]∗∗∗

PC Fract 0.117 0.018 0.097 0.103
[0.007]∗∗∗ [0.009]∗ [0.012]∗∗∗ [0.014]∗∗∗

Rail FE N Y N Y N Y N Y
Dist to Rail <300km <300km <100km <100km <300km <300km <100km <100km
F-stat 15769 6536 7955 6107 15166 5092 7874 5216
Mean Dep. Var -0.000 -0.000 0.152 0.152 -0.001 -0.001 0.151 0.151
Observations 592,466 592,466 379,436 379,436 590,974 590,974 378,117 378,117

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include DHS sample �xed e�ects. Fractionalization measures are
standardized, and de�ned using a 50km bu�er from the grid centroid. Durables consumption is a principle component measure that is then standardized.

6.2 Portage Score IV Results

6.2.1 First Stage

Table 9 shows the results of the �rst-stage regression of the city dummy on portage site

score. We restrict the sample to be within 100km and 50km of a river. We also restrict the

sample to include standardize portage score measures between -3 and 3 standard deviation

units, to exclude outliers. A 1 standard deviation increase in the portage score increases the

probability of a grid being a city by approximately 3.5 percentage points, from a baseline

average of about 12 percentage points. This is a signi�cant increase in the likelihood of city

formation, and the relationship holds with and without �xed e�ects for the nearest river.

Table 9: Portage IV - Predict City

P(city) P(city) P(city) P(city)

Portage Score 0.035 0.041 0.035 0.043
[0.003]∗∗∗ [0.004]∗∗∗ [0.005]∗∗∗ [0.005]∗∗∗

Dist to River <100km <100km <50km <50km
River FE N Y N Y
Mean Dep. 0.127 0.127 0.136 0.136
Observations 37,304 37,304 23,000 23,000

Notes: Controls include land suitability, malaria suitability. All regressions include
country �xed e�ects. Fractionalization measures are standardized, and de�ned using
a 50km bu�er from the grid centroid. The �Dist� row describes the sample cuto� of
distance to nearest river for that particular regression.
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6.2.2 Second Stage

Table B6 and Table 10 show the e�ect of an instrumented city-ethnic diversity interaction

on light density for years 2000-2009 and 2010-2013 respectively. Cities placed in grids with

higher ethnic diversity, as measured by the principle component, do not show a consistent

association with nighttime light density for all years. The results using just the Murdock

fractionalization measure are negative, but insigni�cant.

Table 11 shows the e�ect on con�ict outcomes. Conditional on having a city located

in a grid, a higher level of ethnic diversity measured by the principal component variable

is associated with higher con�ict probability between the years 1975 and 2021. Using the

portage score instrument and the principle component fractionalization measure, portage

cities located in more diverse regions have lower light density and higher con�ict incidence.

Table 12 shows the results for durables consumption. The observations now are at the

DHS household level, rather than the grid-level. While the majority of speci�cations show

a negative impact on durables consumption, the results are noisy, with some speci�cations

show a positive impact on durables consumption. In a robustness analysis, I explore how

these coe�cients are a�ected by di�ering speci�cations of the controls and spatial correlation

structure.

Table 10: Portage IV - Light Density 2010s

Lights Lights Lights Lights Lights Lights Lights Lights

City*Murd Fract 0.074 0.070 -0.014 -0.034
[0.154] [0.141] [0.265] [0.225]

Murd Fract -0.014 -0.017 -0.015 -0.016
[0.020] [0.019] [0.037] [0.032]

City 0.010 -0.037 -0.664 -0.499 0.274 0.216 -0.645 -0.492
[0.357] [0.296] [0.487] [0.386] [0.306] [0.270] [0.444] [0.374]

City*PC Fract -0.169 -0.128 0.042 0.030
[0.174] [0.163] [0.321] [0.253]

PC Fract 0.026 0.005 -0.016 -0.026
[0.035] [0.032] [0.065] [0.051]

River FE N Y N Y N Y N Y
Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
F-stat 41 60 22 36 30 33 16 21
Mean Dep. Var -0.015 -0.015 0.020 0.020 -0.015 -0.015 0.020 0.020
Observations 37,545 37,545 23,240 23,240 36,982 36,982 23,095 23,095

Notes: Controls include land suitability, malaria suitability. All regressions include country �xed e�ects. Fractionalization measures
are standardized, and de�ned using a 50km bu�er from the grid centroid. Light density measures are also standardized after averaging
across years 2000-2009 and 2010-2013.
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Table 11: Portage IV - Prob. Con�ict

P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict) P(con�ict)

City*Murd Fract 0.011 0.026 -0.000 -0.002
[0.013] [0.012]∗∗ [0.024] [0.019]

Murd Fract -0.000 -0.002 0.002 0.003
[0.002] [0.002] [0.003] [0.003]

City 0.135 0.097 0.206 0.154 0.094 0.064 0.121 0.095
[0.030]∗∗∗ [0.021]∗∗∗ [0.056]∗∗∗ [0.031]∗∗∗ [0.027]∗∗∗ [0.019]∗∗∗ [0.047]∗∗∗ [0.027]∗∗∗

City*PC Fract 0.055 0.063 0.071 0.049
[0.011]∗∗∗ [0.011]∗∗∗ [0.019]∗∗∗ [0.015]∗∗∗

PC Fract -0.007 -0.008 -0.010 -0.006
[0.002]∗∗∗ [0.002]∗∗∗ [0.004]∗∗ [0.003]∗∗

River FE N Y N Y N Y N Y
Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
F-stat 29 56 11 28 31 52 13 31
Mean Dep. Var 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
Observations 37,310 37,310 23,006 23,006 36,747 36,747 22,861 22,861

Notes: Controls include land suitability, malaria suitability. All regressions include country �xed e�ects. Fractionalization measures are standardized, and de�ned
using a 50km bu�er from the grid centroid. Prob. con�ict is de�ned as the proportion of years in which the grid experienced a con�ict across 1975-2021.

Table 12: Portage IV - DHS Durables Consumption

Durables Durables Durables Durables Durables Durables Durables Durables

City*Murd Fract -6.613 -1.258 0.777 0.982
[5.716] [0.218]∗∗∗ [0.103]∗∗∗ [0.193]∗∗∗

Murd Fract 4.004 0.716 -0.551 -0.683
[3.508] [0.133]∗∗∗ [0.065]∗∗∗ [0.121]∗∗∗

City 0.535 1.983 1.998 1.754 1.849 1.826 1.649 1.768
[1.501] [0.030]∗∗∗ [0.043]∗∗∗ [0.033]∗∗∗ [0.036]∗∗∗ [0.060]∗∗∗ [0.030]∗∗∗ [0.031]∗∗∗

City*PC Fract -0.695 1.527 -0.220 -0.541
[0.080]∗∗∗ [0.653]∗∗ [0.042]∗∗∗ [0.091]∗∗∗

PC Fract 0.406 -1.080 0.089 0.317
[0.054]∗∗∗ [0.439]∗∗ [0.029]∗∗∗ [0.063]∗∗∗

River FE N Y N Y N Y N Y
Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
F-stat 1 43 252 81 114 7 581 135
Mean Dep. Var -0.050 -0.050 -0.008 -0.008 -0.050 -0.050 -0.008 -0.008
Observations 472,968 472,968 308,488 308,488 472,821 472,821 308,488 308,488

Notes: Controls include land suitability, malaria suitability. All regressions include DHS sample �xed e�ects. Fractionalization measures are standard-
ized, and de�ned using a 50km bu�er from the grid centroid. The principle component asset score is standardized.
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7 Climate and Diversity

Our IV strategy shows the e�ects of cities located in relatively more or less diversed areas on

long-term development. However we may also be interested in how contemporary changes to

diversity across cities a�ects year-to-year changes in urban growth and productivity. Again

there are two empirical challenges: (1) Disentangling the role of agglomeration, or increases

in density, versus changes in the composition of the workforce. (2) The distribution of

ethnic groups is a function of geographic fundamentals and long-term land productivity.

Our strategies so far have considered "pull shocks", where migrants are drawn into regions

that expreience a temporary productivity shock due to their proximity to a railroad or

portage site.

Climate shocks can be considered a "push" shock, driving agricultural workers towards

other regions, and potentially towards urban centers that may o�er refuge. Empirical work

has shown that bad weather shocks drive urbanization in African cities that specialize in

non-agricultural products (ex. higher manufacutring share) (Henderson et al., 2017). Fur-

ther, empirical work has shown that the groups that droughts a�ect have implications for

con�ict, for example when pastoralists are pushed into adjacent farmland (McGuirk and

Nunn, 2024; Kramon et al., 2022). For a given city, their exposure to climate-induced mi-

gration is a function of all potential origin regions, weighted by distance. The composition of

migrant �ows into a city will then be a function of how many individuals choose to migrate

di�erentially from each origin.

Here we will leverage both the intensity of drought shocks, and their distribution across

space to capture changes to size and composition of migration �ows into cities. In particular

we will instrument for city population Li and city fractionalization Ci in a regression of

city-level productivity on population and contemporary diversity (see equation 9).

Log(Y )i = β0 + β1Li + β2Ci +Xi + ϵi (9)

While city-level population data is easy to come by, subnational data on contemporary

ethnicity is rare in Africa. Our estimates of fractionalization will utilize aggregations of DHS

data, as well as broader census estimates from administrative regions. For a given DHS

sample year, we will estimate city level fractionalization using ethnic data from every DHS

sample point within 20km of the city. Because DHS sampling clusters typically collect data

within a neighborhood across nearby houses, we may expect any single cluster of observations

to mismeasure city-level diversity if there is residential segregation across groups. The

accuracy of our diversity measure then relies on having multiple sample points per city. For

states that have multiple DHS rounds, we can construct within-city changes in our diversity

measure across sample years.

For a broader view, we will also use census data at the second administrative level. While

these regions are larger than any given city, the representativeness gives us a more accurate
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picture of subnational contemporary diversity. These censuses also provide an urban dummy

that will allow us to parse urban and rural areas within an administrative region. For a few

countries we have multiple census rounds (ex. Benin, Ghana, Mauritius) and can create a

measure of fractionalization change across a decade.

7.1 Measuring Moments of Drought Shocks

We will use data from the Standardised Precipitation-Evapotranspiration Index (SPEI),

which measures drought intensity monthly by combining temperature and precipitation

data. The data provides monthly estimates of drought intensity at a 0.5x0.5 degree cell

resolution from 1900-2022, which we aggregate into yearly estimates. Layering our various

ethnic map sources over this data, we calculate the average drought experience over time for

each ethnic group separately. For each murdock group g we calculate a yearly drought index

from monthly dummy variables that signal whether the month was a drought based on the

SPEI (ie. the share of year in drought). We aggregate our yearly measures to decade level

as the sum of drought intensity across 10 years. Higher values are more drought years, and

higher proportion of year spent in drought. Using this measure, we construct the following

instruments for a city's exposure to changes in population Li and diversity Ci:

1. Drought Intensity = For a given region i, and decade t, drought exposure µit is the sum

of decade-level drought-intensity across all murdock groups within a 300km boundary,

weighted by distance. For example, a 1970 drought intensity measure for region i is:

µ1970i =

G∑
g

1

log(Dist)
Drought1960−1970 (10)

Note this measure is a function of how many nearby murdock groups there are within

the boundary, so we condition on this variable when needed.

2. Drought Distribution = For a given region i and decade t, drought distribution σit is

the relative distribution of drought severity across tribes:

σit =
G∑
g

(

1
log(Dist)

Droughtgt

µit
)2 (11)

A higher value suggests that the drought shock is more concentrated in particular

groups.

7.2 Cross-Sectional Evidence with Drought Instruments

For our cross-sectional sample of contemporary fractionalization and population estimates,

we use aggregated historical drought instruments. In particular we take the years 1900 to
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Figure 12: Drought Event Example, 1990

1950 and calculate measures of drought intensity µi and drought distribution σi. In each

regression we control for historic diversity, as measured by our Murdock fractionalization

index. A �rst stage is presented in Table 13 where we regress contemproary measures of city

population and DHS fractionalization (measured between 1990 and 2015) on our drought

instruments. Drought intensity in neighboring areas predicts higher population in 2000, and

lower fractionalization. More concentrated drought predicts lower population.

For our �rst stage, we estimate the following equation:

Yi = α+ β1σ1950i + β2µi1950 +Di + Popi1800 + ϵi (12)

Where the outcomes Yi are various measures of contemporary population and fractional-

ization, and σ1950i, µi1950 are drought measures aggregated across years 1900 to 1950, while

Di is historic fractionalization and Popi1800 is a measure of historic population. For the

census data version of the equation, we omit this last variable as we don't have a compara-

ble variable for large administrative regions. Table 13 shows that drought intensity before

1950 predicts population growth today, as well as lower fractionalization. The coe�cient on

drought distribution has the correct sign � higher concentration of drought reduces fraction-

alization. In Table 14 has a less clear association of drought events with population for the

countries where census data is available.
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Table 13: Drought Shock Impact on City-Level Characteristics (Cross-Section)

Pop 1960 Pop 2000 Pop. Growth 2000 DHS Fract

Historic Drought Distribution -0.457 -0.538 -0.176 -0.589
[0.141]∗∗∗ [0.067]∗∗∗ [0.042]∗∗∗ [0.379]

Historic Drought Intensity -0.029 0.009 0.010 -0.009
[0.011]∗∗∗ [0.004]∗∗ [0.003]∗∗∗ [0.003]∗∗∗

Historic Diversity -0.046 -0.027 -0.006 0.040
[0.037] [0.016]∗ [0.011] [0.010]∗∗∗

Pop. in 1800 0.000 0.000 -0.000 -0.000
[0.000]∗∗∗ [0.000]∗∗∗ [0.000]∗ [0.000]∗∗∗

Mean Dep. 10.047 10.142 0.385 0.433
Observations 858 4,191 2,728 612

Notes: Controls include population in 1800, the count of nearby murdock groups and historic diversity, measured
by murdock fractionalization at a 50km boundary.

Table 14: Drought Shock Impact on Census-Level Characteristics (Cross-Section)

log(Pop2000) log(Pop2000) Ethnic HHI Ethnic HHI

Historic Drought Intensity -2.841 -2.478 -1.676 -0.692
[2.137] [3.640] [0.485]∗∗∗ [0.739]

Historic Drought Distribution 0.011 0.200 -0.132 -0.112
[0.758] [1.160] [0.172] [0.235]

Historic Diversity -0.506 -0.700 -0.217 -0.200
[0.117]∗∗∗ [0.199]∗∗∗ [0.027]∗∗∗ [0.040]∗∗∗

Observations 2,210 897 2,210 897
Urban Only No Yes No Yes

Notes: Controls include malaria suitability, the count of nearby murdock groups and historic diversity, measured
by murdock fractionalization at a 50km boundary. All regressions include country and year �xed e�ects. The 2nd
and 4th columns isolate the sample to just areas coded as urban. Columns 1 and 3 control for urban areas as a
dummy.
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7.3 Panel Evidence with Drought Instruments

Next we want to leverage contemporary changes in population and fractionalization within

cities, over time. We would like to estimate the equation:

Yit = α+ β1σit + β2µit + γt + υi + ϵit (13)

Where the drought shock instruments measure decade level drought intensity and drought

distribution, while our outcomes are decade level changes in fractionalization or population.

We include γt decade �xed e�ects and υi city or region �xed e�ects. Figure ?? shows a

scatterplot of decade-decade population changes compared to changes in fractionalization.

Interstingly, we see limited correlated between our measures of population and DHS com-

position changes.

Table 15 shows results from a regression on changes in urban log population, measured

across decades in the Africapolis dataset, and the average value of the drought shock instru-

ments in the same decade. We �nd evidence that drought intensity pushes lower fractional-

ization in a panel setting, and more concentrated droughts lower population growth in the

DHS sample. In Table 16, we �nd evidence that in the census regions drought intensity is

associated with higher population growth.

Table 15: Drought Shock Impact on City-Level Characteristics (Panel)

DHS Fract DHS Fract Pop Growth Pop Growth

Drought Intensity -0.010 -0.018 -0.003 -0.002
[0.001]∗∗∗ [0.003]∗∗∗ [0.003] [0.003]

Drought Distribution -9.926 -13.352 -0.581 -0.275
[12.219] [12.028] [0.135]∗∗∗ [0.168]

Mean Dep. 0.475 0.475 0.406 0.406
Observations 574 574 16,033 16,033
CityFE Yes Yes Yes Yes
DecadeFE No Yes No Yes

Notes: Panel regressions include city �xed e�ects, while the second column adds decade �xed e�ects.
Growth regressions include population data from 1960-2015, while the fractionalization regressions
include DHS observations pooled at 1990, 2000 and 2010.

7.4 2SLS Results with Drought Instruments

The relationship of instruments to outcomes in a �rst stage vary across our samples. Given

that our DHS sample represents more granular population and fractionalization observations

at a city level, we proceed with this sample to attempt to instrument for population and

fractionalization. For both the cross-section and panel datasets, we �rst instrument just for

fractionalization in a regression on lights, controlling for population:

Yit = α+ β1
ˆFractit + β2Popit + γt + υi + ϵit (14)
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Table 16: Drought Shock Impact on Census-Level Characteristics
(Panel)

Ethnic HHI Ethnic HHI Log Pop Log Pop

Drought Intensity -2.248 -1.361 8.182 0.561
[1.268]∗ [1.928] [0.582]∗∗∗ [0.107]∗∗∗

Drought Distribution -0.513 0.731 11.355 0.666
[0.412] [2.074] [0.189]∗∗∗ [0.116]∗∗∗

Mean Dep. 0.490 0.490 11.889 11.889
Observations 272 272 272 272
CityFE
DecadeFE

Notes: Panel regressions include city �xed e�ects, while the second column adds year �xed
e�ects.

Where

Fractit = α+ β1σit + β2µit + γt + υi + ϵit (15)

In a second model, we instrument for both population and fractionalization. We �nd

that fractionalziation, as predicted by decade level drought shock and distribution, predicts

higher light density. That is, cities exposed to more diverse climate migrants see higher light

density in that same decade.

Table 17: 2SLS Population and Diversity on Lights, DHS Data

Cross Cross Panel Panel

PopGrowth 0.002 -0.297
[0.010] [2.525]

Fractionalization -0.829 -1.659 3.719 3.713
[1.969] [3.747] [0.797]∗∗∗ [0.841]∗∗∗

Population 2000 0.758 0.595
[0.127]∗∗∗ [0.747]

Mean Dep. 0.091 0.091 -0.241 -0.241
Observations 513 513 817 817
F-stat 1.777 0.374 17.831 0.083
CityFE N N Y Y
Instrument Population N Y N Y

Notes: Panel regressions include city �xed e�ects, while the second column adds year
�xed e�ects.
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(a) Fractionalization Change by Population
Change

(b) Fractionalization Change by Population
Change (Zoom in)

8 City Size and Diversity

8.1 Heterogeneity by City Size

In this section I consider potential nonlinearities in the relationship between city size and

regional diversity. The model of city growth posited in Appendix Section A suggests that

cities grow at the cost of diversity, and that cities located in homogeneous regions are able

to grow larger without absorbing these costs. For a given city, we might expect diversity

costs to be a function of city size. For example, it may be the case that a large metropolis is

better able to manage high levels of diversity than a smaller city. Policymakers have become

increasingly interested in the role of secondary and tertiary cities in African urbanization;

it's important to understand how these di�erent city sizes are exposed to bene�ts and costs

of migration and ethnic con�ict (ADB, 2022).

Figure 14 look at the correlational relationship between diversity, con�ict and growth

at di�erent population sizes. The scatterplots show the beta coe�cients of a regression of

a diversity measures on light density in 2000, at di�erent quantiles of population measured

by the interpolated Worldpop �gures for 2000. We see that in identi�ed cities, very large

populations see a high association of diversity with growth, as measured by light density.

The relationship is mixed when the analysis includes all grids, regardless of city status in

the Africapolis dataset. Figure 15 shows the same regressions for the con�ict probability

outcome. We see that larger cities have a stronger positive association between diversity

and con�ict. This might be expected from the general spatial equilibrium implications of

my model, where cities pay for the larger size with increased con�ict.

Why might we expect larger population cities to di�erentially bene�t from diversity?

One hypothesis might be that larger cities feature higher rates of industrial or residential

segregation. If di�erent groups live and work in di�erent areas of a city, we might expect this
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to limit e�ects of ethnic con�ict among neighbors or worker teams. Alternatively, it may

be that larger cities feature di�erent kinds of production, including more services or more

complex manufactured products. These production processes may feature higher levels of

labor intensity relative to more agricultural areas, forcing ethnic groups to collaborate more

closely to produce output. This kind of mechanism is at work in Fiszbein et al. (2022),

which shows that US regions that produce crops requiring higher labor intensity also show

lower rates of individualist norms.

8.2 Occupational Segregation and City Size

Do ethnic groups in large cities work together, or in di�erent industries? How do these

patterns a�ect the relationship between diversity and growth? A thesis put forth in Glaeser

et al. (1995) suggests that residential segregation in moderately diverse cities may reduce

ethnic con�ict between groups, and contribute to city growth.

To explore the dynamics of ethnic diversity and size further I use a collection of censuses

available for a subset of African countries at IPUMS International. The %10 samples provide

a representative measure of ethnicity, occupation and industry codes that can be aggregated

to a county level (administrative level 2). For a given county I calculate statistics meant to

capture the county's diversity, industrial concentration, and the segregation of ethnic groups

across industries.

Given a set of industries or ethnic groups i ∈ I in county c, industry concentration

and ethnicity concentration are measured according to a standard HHI, where we sum the

squared share of each group relative to the county population:

HHIc =

I∑
i=1

(
Ni

Nc
)2 (16)

To measure the segregation of ethnic groups j ∈ J across industries i ∈ I, I follow Alesina

and Zhuravskaya (2011) and calculate industry segregation in county c of country m as:

Segc =
1

J − 1

J∑
j=1

I∑
i=1

Nj

Nc

(πij − πj)
2

πj
(17)

Where πj is the fraction of group j in county c, and πji us the fraction of group j in industry

i of county c. Nj is the total population of group j in county c and Nc is the total population

in county c. Higher values of S correspond to greater segregation of ethnic groups across

industries within a county.

In �gure 16 and table 18 I regress these measures on light density. I �nd that high

segregation is correlated with greater night lights, in particular in larger cities.
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Figure 14: Diversity Association with Nighttime Lights by City Size

(a) All Grids

(b) Only Grids in Africapolis Cities Dataset
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Figure 15: Diversity Association with Con�ict Probability by City Size

(a) All Grids

(b) Only Grids in Africapolis Cities Dataset
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Figure 16: Census Diversity and Light Intensity by Population

Note: This �gure shows coe�cients from a regression of Lightsc = α+ β1Xc + ϵc, run by population quintile. I
control for census year, dummy for urban region, and �xed e�ects for state and country. Data is at county level
(administrative level 2). The variable X is either Ethnic HHI or county level segregation respectively.

Table 18: Census Diversity and Light Intensity

Lights 2000 Lights 2000 Lights 2000

Industry Concentration (HHI) -2.737
[0.291]∗∗∗

Ethnic Concentration (HHI) -0.368
[0.249]

Industry-level Segregation 0.592
[0.145]∗∗∗

Population 0.682 0.654 0.426
[0.180]∗∗∗ [0.183]∗∗∗ [0.130]∗∗∗

Urban -0.565 0.314 0.230
[0.113]∗∗∗ [0.061]∗∗∗ [0.046]∗∗∗

Observations 2,384 2,384 2,253

Note: This table shows coe�cients from a regression of Lightsc = α+β1Xc+ϵc, controlling
for current population, census year, dummy for urban region, and �xed e�ects for state and
country. Data is at county level (administrative level 2). The variable X is the Industry
HHI, Ethnic HHI and county level segregation respectively.
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8.3 Residential Segregation and City Size

Segregation by residence is another way to measure the extent to which groups interact

in a city. Few African countries have any data on ethnicity across neighborhoods within

a city. Here we can leverage the fact that DHS sampling collects neighborhood-level data

by surveying multiple adjacent households at a clustering point. Comparing di�erent clus-

ters within the same city consitutes a partial sampling of neighborhood-level characteristics.

We can then measure residential segregation by comparing the ethnicity composition of

neighborhood-level clusters to the city-level ethnic composition of all the city's sample clus-

ters aggregated together.

Figure 17 shows an example of DHS clusters within the city of Lagos, colored by their

respective fractionalization indexes. For a given sample year t, we compute residential seg-

regation of a city i using a multi-group dissimilarity index. Given a city with neighborhoods

j and ethnic groups m, this is calculated as:

Dit =

M∑
m=1

J∑
j=1

tj
T
|πjm − πm| (18)

Where πjm is the fraction of group m in neighborhood j, πm is the fraction of group m

in the city, and tj is total population in neighborhood j.

The accuracy of this exercise relies on having su�cient clusters within a city, as well as

their spatial coverage of the region. To test the accuracy of this measure we can run sim-

ulations that compare this sparse sampling method to ground truth residential segregation

measured using census data. I run simulations of this nature using both US and Indonesia

census data, where I construct arti�cial DHS samples of neighborhoods that resemble our

African samples. The Indonesian data is particularly helpful here because we can compare

our census estimates to our simulated DHS samples, as well as to real DHS samples taken

for the country.

Figure 18 shows a scatterplot of our measured residential segregation by city size. We

see evidence of increased residential segregation by city size. Table 19 shows regressions

of our measured residential segregation on a variety of city characteristics, including night

light density, probability of con�ict and historic ethnic diversity, controlling for city popula-

tion. Segregation seems to strongly predict light density, even when controllingfor the city's

overall ethnic fractionalization. We also �nd that our residential segregation measure seems

unrelated to our historic measures of ethnic diversity from anthropological maps.

9 Conclusion

An open question in the urban economics of developing countries is whether increased density

in poor countries has and will achieve the same agglomeration returns as in rich countries.
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Figure 17: DHS Clusters within Lagos

Figure 18: Residential Segregation by City Size
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Table 19: Residential Segregation and Development

Log(Night Lights) Con�ict Prob. Murdock Div.

Segregation 3.152 0.287 0.001
[0.895]∗∗∗ [1.283] [0.604]

Fractionalization -0.307 0.467 0.867
[0.337] [0.483] [0.228]∗∗∗

Population 0.561 0.055 -0.146
[0.040]∗∗∗ [0.058] [0.027]∗∗∗

Mean Dep. 0.774 0.946 0.547
Observations 898 898 898

Note: All columns control for population, and contain country and year �xed e�ects.

This paper considers whether Africa's history of ethnic division has long term e�ects on the

development and growth of cities. In particular, I show that cities exogenously placed in

more diverse regions during the colonial period are less developed today relative to cities

placed in homogeneous ethnic homelands. This paper suggests one particular mechanism,

which is that diverse regions make it more di�cult for cities to source labor without also

generating a higher probability of con�ict in the urban center. Worker ethnic diversity works

as a congestion force, limiting the bene�ts of agglomeration in dense African cities.

I use two identi�cation strategies to leverage exogenous variation in city location that

is independent from historical regional ethnic diversity. Cities in the colonial period were

more likely to emerge along colonial railways, which were often constructed according to

the least-cost path between a coastal port and an inland natural resource. Cities were also

likely to emerge at portage sites, where steep elevation change meets an inland river due

to the need to move goods from ships to land transport. Both distance to railway and

geographic propensity as a portage site predict city emergence. I use this fact to compare

the development of cities placed in more or less diverse regions. Cities placed in more diverse

areas, as measured by a compilation of anthropological data sources, are less developed and

more prone to con�ict today.

More work needs to be done to fully identify and explore the labor supply mechanism

that might explain how cities are constrained by ethnic diversity. In future work, I hope to

explore how city size and �rm organization may be able to mitigate the congestion e�ects

of worker diversity on city expansion.

Lastly, this work may have implications for how contemporary migrations a�ect the

success of African cities. A next step will be to understand how contemporary �push shocks"

that move migrants into cities a�ect fractionalization and growth. While contemporary

migrants generally increase the population of urban areas, they may or may not a�ect

fractionalization depending on the spatial nature of the shock. Modelling the political

economy of ethnic con�ict as a �congestion force" will help us account for these di�erent

e�ects.
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A Model

What follows is a spatial equilibrium model with endogenous amenities that are a function

of many groups.

� set S locations indexed by i

� workers come from J discrete groups, where gji ∈ (g1i, g2i...gJi) denotes the number

of workers in group j in region i

� each group has �xed total size L̄j st.
∑S

i=1 gji = L̄j

� workers have total mass L̄ =
∑

j=1 L̄
j =

∑S
i=1 Li

A.1 Labor Demand

� Production is conducted by many identical �rms with free entry at each location pro-

ducing a homogeneous good according to yi = AiLi

� Productivity of a �rm d at location i is driven by number of workers, and can face

a con�ict cost C de�ned at the city-level as a function of group mix in location i:

Adi = ĀiL
α
diCi(g1i, g2i...gNi)

−γ

� Because con�ict is de�ned at the city level, each individual �rm takes this cost as given

and simply chooses a number of L workers such that

Wdi = (α+ 1)ĀiL
α
diCi(g1i, g2i...gNi)

−γ (19)

Adding up across �rms in location i we have total labor demand in city i:

ln(Wi) = ln(α+ 1) + ln(Āi) + αln(Li)− γln(Ci(g1i, g2i...gNi)) (20)

Note here that labor demand is impact by the agglomeration e�ects of added labor Li,

as well as the relative composition of that labor in the function Ci, where
∑N

t=1 gtn =

Li. In order to disentangle these e�ects, we need to add structure to the particular

equation for city-wide con�ict. We can add structure to the equation for con�ict

at location i as proportional to the fractionalization or more simply the HHI across

groups:

Ci = ω
N∑

x=1

(
gxi
Li

)2 (21)

A.2 Labor Supply

� Workers from ethnic group j are born in region o and decide where to reside i, where

they receive the equilibrium wage wi.
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� Workers in i also receive a location-speci�c amenity that is negatively related to total

population L−β
i , and positively related to their relative group's share in the local labor

force (
gji

L)i
)υ

� Each individual worker t also receive an idiosyncratic preference shock for each region

ϕit that is distributed Frechet F (z) = e−z−θ

� Moving from origin o to i incurs a migration cost τoi

� Given the above, worker t from group j and birthplace o receives the following total

utility if they move to i:

Ujiot =
wi

Pi
L−β

i (
gji
Li

)υτoiϕit (22)

Where Pi is the local price index.

Given the extreme value distribution, we can follow Eaton and Kortum (2002) to get an

expression for the migration �ows between an origin o and destination i for a given group.

The proportion of people from origin o and type j who choose to work in i is:

πj
io =

(wi
Pi

L−β
i (

gji
Li

)υτoi)
θ∑

i(
wi
Pi

L−β
i (

gji
Li

)υτoi)θ
(23)

Then we can add these shares across origins to get:

Lji =
∑
o

πj
ioL

0
jo (24)

Where L0 represents the initial distribution of workers across groups and origins.

Li =
∑
j

Lji (25)

Note that the total labor demand Li for a region is a function of two particular matrices

of parameters, L0 and τ . L0 is a J × S matrix marking the distribution of initial workers

by group J and origin region S. τ is the S × S matrix of migration costs between each

origin and destination. For a given region i, L0 × τi produces a J × 1 vector that captures

the region's exposure to each ethnic group, weighted by migration costs. This vector can

be summarized as a region's potential diversity exposure, which we proxy in the empirical

exercise with a fractionalization index within a given radius.

A.3 Production

� Following Bryan and Morten (2019), I assume that a representative �rm maximizes

the economy-wide production Y that aggregates the regional varieties yi according to
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:

Y = (

S∑
i=1

y
σ−1
σ

d )
σ

σ−1 (26)

The individual prices for regional products pd are pinned down by the representative

�rm maximizing the production of Y subject to costs
∑

d pdyd. This gives us pd =

( Y
yd

)
1
σ . Individual workers consume the �nal good Y, and it enters linearly into utility.

We take this price as the numeraire.

Under perfect competition, we have that �rms o�er a wage equal to the marginal

product of labor: wi = Ai.

A.4 Identifying Parameters with Productivity Shocks

The labor demand equation 20 includes Ci, an endogenous function of contemporary diver-

sity in region i. In the empirical section, we use a proxy for this measure using the region's

�xed exposure to diverse potential workers from the historic distribution of ethnicities, which

we call an area's fractionalization Di. This index can be thought of as a kind of summary

statistic for a region's diversity exposure, L0τ . The interaction of the fractionalization index

and labor demand Li proxies the increase in diversity generated by increased labor demand.

Therefore the adapted labor demand equation we estimate is:

ln(Wi) = ln(α+ 1) + ln(Āi) + αln(Li)− γFraci ∗ ln(Li) + ωFraci (27)

In lieu of granular wage data, we utilize light density as a measure of output y. We can

use the portage and rail instruments as productivity shocks to identify the labor demand

equation 27. The endogeneity concern stems from the unobserved fundamental productivity

ln(Āi). Both the rail and portage instrument can be thought of as a region-speci�c pro-

ductivity shock that shifts the region's fundamental productivity and the associated labor

demand independent of the underlying distribution of ethnic groups. This means that given

a regional productivity shock Zi, we can instrument for Li. We can also instrument for

Fract ∗ ln(Li) using the interaction Frac ∗ Zi.

The city dummy used in the empirical exercise is e�ectively capturing a threshold of

labor demand, and is therefore a proxy for historical labor demand Li.

A.5 Computing Spatial Equilibrium

We have a labor market clearing condition so that total labor L̄ =
∑

i Li In addition, each

group j has a set number of workers L̄j such that L̄ =
∑

j L̄j . We reach a spatial equilibrium

by �rst producing a guess for the J matrices Πj
io, which are S × S giving the proportion of

people working in i for each origin o in group j (each element in the matrix is a realized

πj
io).
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I then proceed as follows:

� Calculate the new shares πj
io.

� Summarize the shares across groups j to create a total origin destination matrix Πio =∑
j Π

j
io

� Iterate until convergence of Πio

B Portage Score Validation

B.1 Calculating Portage Score

The portage score is calculated from the interaction of a grid's ruggedness and distance to

the nearest river. I standardize the log of the variable ruggedness and distance to river,

setting the mean to 100 to avoid negative values. The distance to the river is multiplied

by -1, so that higher values correspond to more ruggedness and closer to river. These two

variables are then interacted and standardized, creating score such that higher values mean

a grid is more rugged and closer to a river.

B.2 Validating Portage Score with Hydrological Data

The portage score is meant to capture points at which a river network transitions from

navigable water to rapids or waterfalls. The intersection of land ruggedness and the river is

meant to capture these points, assuming that waterfalls and rapids are generated by rapid

elevation changes along a river. This approach is very di�erent from that of Bleakley and

Lin (2012), which identi�es portage sites using the interaction of the US river network and

the Atlantic Seaboard Fall Line. To validate that my portage score is capturing rapids and

waterfalls, I relate the score to hydrological measures taken from the HydroSHEDS database

on rivers, which gives a granular record of average discharge at points along the river, as

well as a rating of �ow volume on a categorical scale. Using these variables, I calculate for

each river segment the variation in discharge and �ow by collecting all river points within

a 30km radius. The �ow variation and discharge variation of a river segment capture any

substantial changes in river speed and volume at a given point, which may be related to the

presence of rapids or other sharp changes to river navigability.

Figure B1 shows an example of the �ow change measure on the river network of the

Democratic Republic of Congo. The overlapping red dots mark cities identi�ed in the

Africapolis dataset. We see high values for �ow variation near the mouth of the river, where

Kinshasa is located after a series of rapids that limit navigability from the coast. Figure B2

shows a transport map for the DRC, combining highway and waterway info from Michelin

and the UN. We can see that Kinshasa, Kiangani and Kasongo are all located before or
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after signi�cant rapids. We also see that several major cities such as Mbandaka are located

at important river forks.

Table B1 shows the grid-level relationship between portage score and the �ow and

disharge variation of the river segment closest to the grid. The analysis is restricted to

grids that lie near a river segment. We see that portage score is signi�cantly associated with

the river segment's variability in terms of �ow and discharge, suggesting that ruggedness

along a river network is predictive of the river's hydrological variability, which in turn is

associated with rapids and waterfalls.

Figure B1: Flow Variation in DRC River Network

Table B1: Portage Score and Hydrological Features

Portage Score Portage Score Portage Score Portage Score

Discharge Variation 0.021 0.021
[0.003]∗∗∗ [0.003]∗∗∗

Flow Variation 0.252 0.442
[0.068]∗∗∗ [0.064]∗∗∗

Dist to River <50km <50km <100km <100km
Mean Dep. Var 1 1 0 0
Observations 23,219 23,219 37,460 37,460

add

C Additional Figures & Tables
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Figure B2: DRC River Transport

Table B2: Correlation across Measures of Ethnic Diversity

Murd. F GREG F Lang. C Murd. C GREG C Lang. C PC
Murd. F 1.00
GREG F 0.43∗∗∗ 1.00
Lang. C 0.44∗∗∗ 0.49∗∗∗ 1.00
Murd. C 0.80∗∗∗ 0.47∗∗∗ 0.50∗∗∗ 1.00
GREG C 0.33∗∗∗ 0.59∗∗∗ 0.54∗∗∗ 0.41∗∗∗ 1.00
Lang. C 0.38∗∗∗ 0.43∗∗∗ 0.69∗∗∗ 0.52∗∗∗ 0.71∗∗∗ 1.00
PC 0.72∗∗∗ 0.73∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.78∗∗∗ 0.81∗∗∗ 1.00
Observations 85511

Notes: All measures are aggregated using the 50km radius around grid centroids. �F� labels denote measured
fractionalization using shares of land (except the DHS measures, which uses shares of people). This is calculated
as Fract =

∑m
1 ni(1 − ni) where ni is the proportion of area covered by group m within the area of grid i's

bu�er. �C� denotes a count of the number of intersecting ethnic groups within the grid's bu�er range. �PCA�
is the principal component of the murdock, GREG and language fractionalization and count measures within the
50km boundary.

Table B3: Relationship of Diversity Measures to Census Diversity

Murd Fract PC Fract Murd Count Fract Lang Fract GREG

Census Ethnic Concentration -0.691 -0.394 -0.491 -0.104 -0.092
[0.080]∗∗∗ [0.075]∗∗∗ [0.088]∗∗∗ [0.018]∗∗∗ [0.016]∗∗∗

Observations 2,384 2,384 2,384 2,384 2,384

Notes: The census sample includes %10 samples from Benin (1979,1992,2002,2013), Ethiopia (1994), Ghana (2000,2010), Guinea
(2014), Malawi (2008), Mali (2009), Mauritius (2000,2011), Morocco (2014), Senegal (2013), Sierra Leone (2004), Togo (2010), Uganda

(2002), Zambia (2000, 2010). Ethnic fractionalization for country i is calculated as
∑J

j=1(
gj
Ni

)2 where gj is the number of people

from ethnic group j, and Ni is the total sampled population of the county. Higher levels of ethnic concentration imply less diversity.
Regressions include country �xed e�ects.
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Figure B3: E�ect of Diversity Across Diversity De�nitions

(a) Count Measures of Diversity

(b) Fractionalization Measures of Diversity
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Table B4: Rail IV - Light Density 2000s

Lights Lights Lights Lights Lights Lights Lights Lights

City*Murd Fract -0.176 -0.187 -0.053 0.010
[0.082]∗∗ [0.093]∗∗ [0.097] [0.103]

Murd Fract 0.021 0.019 -0.004 -0.016
[0.012]∗ [0.013] [0.019] [0.019]

City 0.754 0.378 1.137 1.077 0.712 0.375 1.160 1.076
[0.098]∗∗∗ [0.118]∗∗∗ [0.109]∗∗∗ [0.112]∗∗∗ [0.102]∗∗∗ [0.119]∗∗∗ [0.109]∗∗∗ [0.110]∗∗∗

City*PC Fract 0.029 -0.094 -0.114 -0.009
[0.066] [0.082] [0.099] [0.104]

PC Fract 0.015 0.032 0.064 0.019
[0.015] [0.017]∗ [0.029]∗∗ [0.029]

Rail FE N Y N Y N Y N Y
Dist to Rail <300km <300km <100km <100km <300km <300km <100km <100km
F-stat 353 193 312 267 358 181 222 197
Mean Dep. Var -0.032 -0.032 -0.005 -0.005 -0.030 -0.030 -0.002 -0.002
Observations 41,436 41,436 17,763 17,763 40,257 40,257 17,268 17,268

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country and rail �xed e�ects. Fractionalization measures
are standardized, and de�ned using a 50km bu�er from the grid centroid. Light density measures are also standardized after averaging across years
2000-2009 and 2010-2013.

Table B5: Rail IV - Con�ict Deaths

Deaths Deaths Deaths Deaths Deaths Deaths Deaths Deaths

City*Murd Fract 6.003 16.103 5.657 30.030
[40.768] [43.704] [50.469] [51.353]

Murd Fract -5.341 -8.688 -5.541 -17.157
[16.404] [17.511] [24.694] [25.755]

City -47.038 -59.089 -66.664 -69.749 -53.936 -61.160 -29.250 -32.314
[41.747] [61.540] [45.654] [50.135] [40.932] [57.106] [50.313] [49.577]

City*PC Fract 13.051 18.103 -74.428 -54.633
[32.793] [40.108] [80.348] [73.967]

PC Fract -9.194 -11.403 42.699 33.182
[15.946] [19.388] [46.046] [44.846]

Rail FE N Y N Y N Y N Y
Dist to Rail <300km <300km <100km <100km <300km <300km <100km <100km
F-stat 57 35 29 29 51 25 8 9
Mean Dep. Var 31.800 31.800 24.635 24.635 31.807 31.807 24.635 24.635
Observations 4,143 4,143 1,752 1,752 4,142 4,142 1,752 1,752

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country and rail �xed e�ects. Fractional-
ization measures are standardized, and de�ned using a 50km bu�er from the grid centroid.
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Table B6: Portage IV - Light Density 2000s

Lights Lights Lights Lights Lights Lights Lights Lights

City*Murd Fract 0.178 -0.064 -0.019 -0.342
[0.219] [0.185] [0.450] [0.310]

Murd Fract -0.050 -0.010 -0.065 0.001
[0.029]∗ [0.025] [0.064] [0.045]

City -0.830 -0.125 -2.422 -0.731 -0.723 0.084 -2.302 -0.690
[0.436]∗ [0.301] [0.866]∗∗∗ [0.465] [0.370]∗ [0.257] [0.733]∗∗∗ [0.413]∗

City*PC Fract 0.212 -0.239 0.124 -0.205
[0.179] [0.161] [0.358] [0.246]

PC Fract -0.033 0.045 -0.010 0.036
[0.037] [0.033] [0.072] [0.049]

River FE N Y N Y N Y N Y
Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
F-stat 40 67 17 35 42 62 20 38
Mean Dep. Var -0.006 -0.006 0.035 0.035 -0.004 -0.004 0.037 0.037
Observations 37,310 37,310 23,006 23,006 36,747 36,747 22,861 22,861

Notes: Controls include land suitability, malaria suitability. All regressions include country �xed e�ects. Fractionalization measures are
standardized, and de�ned using a 50km bu�er from the grid centroid. Light density measures are also standardized after averaging across
years 2000-2009 and 2010-2013.

Table B7: Portage IV - Con�ict Deaths

Deaths Deaths Deaths Deaths Deaths Deaths Deaths Deaths

City*Murd Fract -34.416 -33.941 -87.729 -77.365
[57.427] [57.676] [69.136] [60.047]

Murd Fract 12.996 12.653 33.164 30.071
[20.843] [21.252] [26.672] [23.648]

City 85.432 78.145 43.575 50.795 93.738 92.076 37.363 44.863
[77.610] [67.777] [77.198] [64.187] [80.959] [72.191] [81.734] [70.122]

City*PC Fract -33.993 -37.597 -85.255 -64.001
[48.222] [53.074] [79.538] [60.215]

PC Fract 13.437 14.443 40.487 31.998
[22.909] [25.506] [38.831] [30.399]

River FE N Y N Y N Y N Y
Dist to River <100km <100km <50km <50km <100km <100km <50km <50km
F-stat 12 17 7 10 9 12 3 7
Mean Dep. Var 28.609 28.609 27.572 27.572 28.619 28.619 27.572 27.572
Observations 3,826 3,826 2,483 2,483 3,824 3,824 2,483 2,483

Notes: Controls include land suitability, malaria suitability. All regressions include country �xed e�ects. Fractionalization measures
are standardized, and de�ned using a 50km bu�er from the grid centroid.

Table B8: Fractionalization and Dist to Rail

Murd Fract Murd Fract PC Fract PC Fract

Dist to Rail 0.176 1.175 0.270 0.389
[0.152] [0.297]∗∗∗ [0.124]∗∗ [0.054]∗∗∗

Dist to Rail <100km <60km <100km <60km
Observations 17,667 11,224 17,173 29,964

Notes: Distance to rail and the fractionalization measures are standardized. The re-
gressions include malaria suitability, land suitability, historic population and rugged-
ness as controls, as well as country and rail �xed e�ects.
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Table B9: Rail IV - Predict City

Prob. City Prob. City Prob. City

Dist to Rail 0.020 -1.541 -3.602
[0.002]∗∗∗ [0.059]∗∗∗ [0.129]∗∗∗

Dist to Rail <100km <60km
Mean Dep. 0.089 0.176 0.206
Observations 90,555 17,763 11,280

Notes: Controls include land suitability, malaria suitability, rugged-
ness. All regressions include country and rail �xed e�ects. Fraction-
alization measures are standardized, and de�ned using a 50km bu�er
from the grid centroid. The �Dist� row describes the sample cuto� of
distance to nearest colonial rail for that particular regression.

Table B10: Rail IV - Light Density

Lights 2000s Lights 2010s Lights 2000s Lights 2010s m_4

City*Murd Fract 0.011 -0.027 -0.057
[0.093] [0.089] [0.096]

City*PC Fract -0.060 -0.180
[0.087] [0.090]∗∗

City 1.232 1.267 1.487 1.263 1.532
[0.103]∗∗∗ [0.102]∗∗∗ [0.107]∗∗∗ [0.105]∗∗∗ [0.109]∗∗∗

Murd Fract -0.012 -0.008 -0.008
[0.021] [0.021] [0.022]

PC Fract 0.065 0.066
[0.028]∗∗ [0.029]∗∗

Rail FE Y N Y Y Y
F-stat 331 360 331 346 346
Mean Dep. Var 0.021 0.021 0.041 0.024 0.044
Observations 11,280 11,280 11,280 10,987 10,987

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country and rail �xed
e�ects. Fractionalization measures are standardized, and de�ned using a 50km bu�er from the grid centroid. Light
density measures are also standardized after averaging across years 2000-2009 and 2010-2013. The sample is restricted
to grids within 60km of a colonial rail line.
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Table B11: Rail IV - Con�ict

Prob. Con�ict Avg Deaths Prob. Con�ict Avg Deaths

City*Murd Fract 0.005 15.493
[0.005] [15.225]

City*PC Fract 0.021 0.194
[0.005]∗∗∗ [12.277]

City 0.057 11.385 0.053 18.115
[0.006]∗∗∗ [16.224] [0.006]∗∗∗ [16.228]

Murd Fract -0.001 -4.384
[0.001] [8.456]

PC Fract -0.004 1.181
[0.002]∗∗ [7.942]

Rail FE Y Y Y Y
f-stat 331 50 346 53
Mean Dep. Var 0.013 19.116 0.014 19.116
N 11,280 1,213 10,987 1,213

Notes: Controls include land suitability, malaria suitability, ruggedness. All regressions include country
and rail �xed e�ects. Fractionalization measures are standardized, and de�ned using a 50km bu�er from
the grid centroid. Prob. con�ict is de�ned as the proportion of years in which the grid experienced a
con�ict across 1975-2021. The sample is restricted to grids within 60km of a colonial rail line.
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