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Abstract

The complexity of legislative language is of theoretical importance to many sub-
stantive questions about legislative politics. However, most existing measures of bill
complexity are either generated at the broad issue level and applied to individual bills,
or they are reliant on a simple metric like length. In this paper, we apply a pair-
wise comparison framework to the measurement of complexity in legislative texts. We
compare the results of a Bradley-Terry model (Bradley & Terry 1952) fit on pairwise
comparisons made by human coders with the results of the same model fit on compar-
isons made by a Large Language Model (LLM). There is a moderately high level of
agreement between human coders and the LLM, and the relationships between observ-
able text features and the underlying trait of complexity are similar in comparisons
made by human coders and by the LLM. Our work demonstrates that, with researcher-
selected bridging texts and carefully designed prompts, LLMs can be used to measure
complexity in legislative texts.



1 Introduction

Measuring the complexity of language used to communicate policy-relevant information is

central to answering important questions spanning the realms of law, policy, and politics.

The complexity of a given policy affects its diffusion across jurisdictions (Makse & Volden

2011), and issue complexity is also a relevant consideration in legislative decisions to delegate

policymaking authority to the executive branch (Epstein & O’Halloran 1999). Scholars of

direct democracy at the state and local level are interested in understanding the complexity of

language used for ballot initiatives (e.g., Reilly & Richey 2011). Additionally, conceptualizing

and measuring the complexity of written policy will become especially important to analyzing

judicial decision-making in a post-Chevron era in which courts may take a more active role

in resolving statutory ambiguities.

For scholars, policy complexity can be seen as an independent variable that helps shape

institutions and, alternatively, as a dependent variable that is an output of institutional

dynamics. On the one hand, for Krehbiel (1992), the complexity of policy issues explains

the existence and operation of the specialized legislative committee system. Relatedly, com-

mittee jurisdictions evolve in part as a response to changes in the complexity of issue areas

(Baumgartner et al. 2000), and committee chairs retain power and influence in an increas-

ingly leadership-dominated chamber because of their specialized policy expertise (Curry

2019). Each of these perspectives treats the inherent complexity of policy as a determinant

of institutional dynamics. Alternatively, the complexity of policy—as reflected in written

legislation—can be understood as a function of the legislative institutions that produce it.

Variations in the complexity of legislative language arise from the institutional features of

Congress itself and from strategic actors pursuing policy and electoral goals within that

institutional context.

Regardless of whether political scientists are interested in policy complexity as a depen-

dent or an independent variable, a consistent text-based measure of complexity would help

answer many important substantive questions in the field. However, existing measures of
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policy complexity are built upon work which centers human labor. Benoit et al. (2019) build

a latent model of complexity based around the work of crowd-sourced human coders. Sim-

ilarly, Senninger (2023) uses comparisons of texts by human coders to build Bradley-Terry

comparison models of legislative complexity. These approaches, however, come with all of

the shortfalls of human labor, including the inability to parallel process (Jones 2001) and

provide long-term attention to specific tasks (Simon 1985).

Our work in this paper builds upon previous work by Senninger (2023) and Benoit

et al. (2019) in two ways. First, we focus specifically on legislative language produced by

the U.S. Congress. This requires directed human cognition, as samples will be written in

legalistic language. Second, we introduce Large Language Models (LLMs) as a potential way

to overcome human limitations. This pursuit leads us to our core question of whether LLMs

can understand legislative complexity and what limits this new technology faces.

In what follows, we first address how scholars in the applied field of legislative politics

understand complexity in both substance and effect. We then discuss ways to understand

complexity in published applied work and broad concept before moving to our research design

and findings. These findings demonstrate that, while LLMs can mirror human behavior in

understanding legislative complexity, such models face similar limitations to humans and

existing scaling exercises. We finish with a discussion of what the method and findings mean

for the current understanding of legislative design and delegation, as well as ideas for future

exploration.

2 Legislatures, Proposals, and Legislative Complexity

While the study of complexity in various forms of political communications—speeches, bal-

lot initiatives, etc.—forms a helpful foundation for the study of complexity in legislative

language, the distinctiveness of legislative language must also be acknowledged. Legislative

language, or the actual language that constitutes policy proposals in a legislative body, re-
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quires “a degree of precision and internal coherence rarely met outside the language of formal

logic or mathematics” (Dickerson 1986, pg. 4). Legislative language is meant to bring about

certain policy outcomes in the real world, and in order to do so effectively, it must be legally

enforceable, administrable, and in accordance with both the existing body of statutory law

and the Constitution. It must also attempt to foresee any possible contingency that may

arise in its interpretation or application (Strokoff & Filson 2007, pg. 97). In many cases,

these stringent requirements militate against the goal of “readability,” and may lead almost

inevitably to a certain degree of complexity.

However, to conceptualize the complexity of legislative language as an inevitable con-

sequence of the requirements of its form is to punt on any number of important substantive

questions about variations in the complexity of policy language produced by legislatures.

Scholars of legislative politics have generally understood this variation either as a reflection

of variation in the inherent complexity of the underlying issue, or as a byproduct of strategic

legislative actors pursuing their goals.

On the one hand, complexity in a written policy can be thought of as merely a reflection

of the complexity of the underlying issue the policy is meant to address. Complex problems,

this logic goes, require complex solutions, and therefore the complexity of the language

used in a written policy is increasing in the complexity of the issue the underlying policy.1

Some empirical work on legislative politics draws on this tradition by generating issue-level

measures of complexity and assigning those issue-level measures to individual bills (Epstein

& O’Halloran 1999; Canes-Wrone & De Marchi 2002).

Another possibility is that policy complexity is strategically produced by purposive po-

litical actors pursuing some particular goal. Curry (2015, pp. 102-106), for example, argues

that party leaders intentionally craft complex legislative language as a way of enhancing

their informational advantage over rank-and-file legislators about the actual content of large

1Whereas professional legislative drafters always strive for readability and clarity in their products, they
acknowledge that there are cases in which “the substantive problems involved are so complex or esoteric that
nothing could make their solution readable” (Strokoff & Filson 2007, pg. 99).
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legislative packages. In the rulemaking context, there is evidence that complex rules attract

less attention during notice and comment rulemaking (Pagliari & Young 2016), and that

bureaucrats may strategically write proposed rules in complex language in order to avoid

scrutiny by political principals or affected interests (Potter 2019). This runs counter to the

advice of professional legislative drafters, who urge that “Unless it is absolutely necessary

for the accurate expression of an unusual or complex idea, any language that could confuse

or bewilder the reader is suspect even though it may be technically correct, and you should

seek an acceptable alternative” (Strokoff & Filson 2007, pg. 94).

Considerations about the relevant audiences for legislative text may also help explain

variation in the complexity of legislative language. Legislative preferences over the admin-

istrative specifics of implementation may be written into bill text (McCubbins et al. 1987,

1989), and complex policy detail may be used to constrain executive branch actors in their

exercise of delegated policy authority (Epstein & O’Halloran 1999; Huber & Shipan 2002;

Vannoni et al. 2021). Acknowledging that variation in the complexity of legislative text may

stem from strategic motivations and institutional dynamics calls for measurement strategies

that go beyond broad issue-level complexity, and are able to generate bill-specific scores

derived from text characteristics.

3 Understanding and Measuring Complexity

Work by Benoit et al. (2019) is helpful in terms of generating text complexity measures from

political texts (specifically, snippets from U.S. presidential State of the Union addresses),

and Senninger (2023) extends that work to European Union policy language—a step closer

to our substantive focus on legislative language produced by the U.S. Congress.2 Senninger

(2023) discusses two aspects of policy complexity in text—one based on the length and

2The texts that Senninger uses are recitals, which are essentially summaries of articles of legislation written
and adopted by the European Union. Recitals, according to Senninger (2023, Supplementary Information,
Section G), describe “the reasons, principles, and assumptions of legislation,’ in language that is “more
similar to text that citizens usually read in news reports.”
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detail of a policy (Ehrlich 2011; Hurka & Haag 2020), and the other based on the relational

network of different policy elements referenced within a policy (Krehbiel 1992; Adam et al.

2019). Long, detailed policy language with many nested references to other policies would

be considered very complex, whereas shorter policy language that is sparse on details and

does not reference other policies would be considered less complex.

The relationship between these bill text characteristics and complexity are fairly in-

tuitive to human readers. However, it is unclear whether an LLM would make the same

connections between these observable characteristics and the underlying latent trait of com-

plexity. An illustrative example is provided by the following section of legislative text:

• SEC. 7. ESTABLISHMENTOF NATIONAL DATABASE FOR RECORDS OF SERVI-

TUDE, EMANCIPATION, AND POST-CIVIL WAR RECONSTRUCTION. (a) In

General.–The Archivist of the United States may preserve relevant records and estab-

lish, as part of the National Archives and Records Administration, an electronically

searchable national database consisting of historic records of servitude, emancipation,

and post-Civil War reconstruction, including the Refugees, Freedman, and Aban-

doned Land Records, Southern Claims Commission Records, Records of the Freed-

men’s Bank, Slave Impressments Records, Slave Payroll Records, Slave Manifest, and

others, contained within the agencies and departments of the Federal Government to

assist African Americans and others in conducting genealogical and historical research.

(b) Maintenance.–Any database established under this section shall be maintained by

the National Archives and Records Administration or an entity within the National

Archives and Records Administration designated by the Archivist of the United States.

This section is fairly detailed. It includes specific names of relevant records (i.e., the

Refugees, Freedman, and Abandoned Land Records), and it specifies that the Archivist of

the United States is able to designate some sub-entity of the National Archives and Records

Administration to maintain the resulting database. However, a human coder would not

necessarily conflate this detail with complexity, as unfamiliarity with the specific details
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does not hinder understanding of the section itself. As long as the reader picks up on the

fact that the middle part of the section is simply a list of records with which the Archivist of

the United States is likely familiar, the specificity does not add to the complexity or detract

from the ability to understand. It is unclear however, whether an LLM would arrive at the

same conclusion.3

Of course one of the benefits of a pairwise comparison framework is that neither human

coders nor the LLM needs to generate a raw complexity score on an arbitrary scale for

each text. The relevant question about the section above, then, is whether human coders

and the LLM would make the same judgment about the relative complexity of that section

compared to some other section. We seek to answer that question below. We test the

relationship between text characteristics meant to tap the latent trait of complexity—word

count, sentence length, word rarity, number of U.S. Code references, etc.—and the outcomes

of pairwise comparisons. Of particular interest is whether the relationships between these

text characteristics and pairwise comparison outcomes are similar when the comparisons are

made by human coders versus when the comparisons are made by the LLM.

4 Data and Methods

Given our central question of the capacity of LLMs to capture complexity, we proceed in

several steps. First, we obtained human evaluations of the relative complexity of legislative

texts, in a fashion similar to Senninger (2023). This approach involved carefully setting

parameters for which texts were included. We selected sections of bills that became law

during the 110th and 111th Congresses which were between 1000 and 1200 characters. This

was due to our desire to make comparisons equivalent between the two samples (Carlson &

Montgomery 2017) and have the comparison not depend on differences in length for human

coders (Senninger 2023). We then randomly sampled 200 observations meeting these length

3Interestingly, as discussed in our appendix, human coders did find this section considerably easier to
understand than did the LLM.
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requirements.4

As discussed in Eldes et al. (2024, pp. 238-239), having a carefully chosen comparison set

for any pairwise comparison exercise can help in making fine-grained distinctions in the latent

characteristic of interest. A well-chosen comparison set should encompass the full spectrum

of the latent trait—in our case, the complexity of the text. We chose five sections that, in

our judgment, range from very complex to very simple. Every pairwise comparison in our

data includes one of these five sections, which can be found in our appendix. We randomly

generated pairings in which each pairing had a randomly drawn text from this comparison

set and a randomly drawn text from the pool of 200 text sections described above. Human

coders were then asked to compare the relative complexity of the two selected texts, and

repeat this for twenty randomly selected pairs of observations.5

We next estimated the underlying complexity of a given document using a model for

pairwise comparisons from Bradley & Terry (1952). The Bradley-Terry model is a probabilis-

tic framework used to model pairwise comparisons between items to infer a latent construct,

such as quality, preference, or sophistication. It assumes that the probability of one item

being preferred over another depends on their relative strengths, which are represented by

parameters estimated from the comparison data. For example, if two texts are compared

for sophistication, the model estimates a latent score for each text based on the observed

outcomes of all pairwise comparisons. These latent scores are then used to rank or position

items along the construct of interest. The model is particularly valuable for measuring con-

structs that are difficult to observe directly, as it relies on relative judgments rather than

absolute measures, allowing researchers to derive meaningful insights even in the absence of

explicit ratings or objective benchmarks (Carlson & Montgomery 2017).

Next, we repeated the same structure given to human coders with an LLM. We interface

with the OpenAI API using the “promptr” package in R (Ornstein 2024). We also follow the

4We do not have full coverage at this time for the 200 observations in our data due to limitations from
the survey instrument.

5See the appendix for the instructions given to respondents as well as a sample comparison. For coding
responses, the authors and students from two of their universities were used as coders.
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practices of using LLMs for text classification tools described in Ornstein et al. (2024), which

describes LLMs as ”stochastic parrots” that can be effectively adopted in traditional NLP

applications. We used GPT-4.0 with the temperature set at 0.1 to replicate the randomness

that sometimes occurs with human coders. We used this to see if the LLM would generate

similar comparisons and make similar choices in the same sets of comparisons as our human

coders would. For the LLM performing the comparison task, we decided to use the exact

same directions that we provided for the human coders as we did for the LLM. While this

is likely not the most optimal long-term prompt engineering solution, we believe that this

approach gives us the most direct apples-to-apples comparison for our question. We set the

system message, which governs the overall logic of the LLM architecture, to instruct it to

act as a coder who is versed in text complexity and has studied American politics.6

For generating scores for each, we fit a Bradley-Terry model on the data generated from

the pairwise comparisons between each document. This makes the tasks between the LLM

and the human coders completely analogous. In later versions, we will ask the LLM to

directly generate text complexity as a standalone metric in order to compare Bradley-Terry

to a more traditional metric of complexity, but for now, we thought the pairwise comparison

tasks make the comparison more direct to our human coders.

We next explored having the LLM perform a much larger set of comparisons that were

not the same sets that our human coders analyzed, creating a comparison point to evaluate

how the model performs outside of its regular context. For this set of comparisons, we

selected all sections of legislation that became law from the 110th and 111th Congresses

between 750 and 2500 characters. This allows the comparison made by the LLM to include

variation in length of sections not given to our human coders or original LLM comparison.

We also did not provide the comparison bridging set structure in order to more clearly match

general conceptions of complexity outside of Bradley & Terry (1952). The logic behind this

choice is to fully evaluate the constraints of an LLM in making these pairwise comparisons

6The text of our prompt and system message are included in the appendix.
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effectively.

4.1 LLMs as a Measurement Tool

The integration of Large Language Models into social science research has opened significant

opportunities for text classification and measurement tasks. These models, such as GPT-3

and GPT-4, demonstrate strong performance in analyzing and classifying text with minimal

task-specific training data. Ornstein et al. (2024) provide a succinct overview for how to use

LLMs in text classification tasks more traditionally suited for NLP methods/models. For

example, Wu et al. (2023) utilized ChatGPT to estimate U.S. senators’ ideological leanings

through pairwise comparisons analyzed using the Bradley-Terry model. Their “Ideology

LaMP scores” showed high correlation with the first dimension of DW-NOMINATE while

also providing unique insights into ideological distinctions (Wu et al. 2023). Indeed, the

approach Wu et al. (2023) take to using LLMs relies on a similar adversarial pairwise com-

parison logic and Bradley Terry model that we do. Burnham (2024) extended this line of

inquiry by introducing “Semantic Scaling,” a method that combines LLM-generated clas-

sifications with item response theory to measure ideological dimensions in both mass and

elite political texts (Burnham 2024). These applications highlight how LLMs can replicate

or extend existing measurement frameworks in political science.

More broadly, LLMs have demonstrated their utility in computational social science by

classifying and interpreting social phenomena, such as political ideology and persuasiveness,

offering nuanced analyses of social behavior (Ziems et al. 2023). They have also been em-

ployed to simulate responses to social science experiments, with GPT-4 accurately predicting

outcomes that align closely with empirical results (Argyle et al. 2023). Despite these suc-

cesses, the use of LLMs is not without challenges. Algorithmic bias, ethical considerations,

and the need for effective prompt engineering remain critical concerns (Ziems et al. 2023).

Additionally, while LLMs offer scalability and versatility, their outputs require careful vali-

dation to ensure reliability and accuracy (Egami et al. 2024). There are also concerns that
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LLMs collapse the complexity of measurement found in human-generated data when gener-

ating synthetic data, a concern highlighted by Bisbee et al. when they examined synthetic

survey response data and found that LLM-generated responses lack the noise and messiness

inherent in real response data (Bisbee et al. 2023). This is a concern for us, given that we

are using an LLM as a replacement for human coders.

4.2 Operationalizing Complexity Metrics

Given our interest in whether LLMs can measure legislative complexity, we utilize the

Bradley-Terry scores as our dependent variable in all models. Thus, the dependent vari-

able throughout our paper is the choice of the easier text in a comparison setting. For what

drives this selection, we begin with the metrics developed by Benoit et al. (2019) (hereafter

BMS) to assess textual sophistication. These metrics provide a systematic approach to mea-

suring the complexity and sophistication of texts by focusing on linguistic and structural

features.

The first measure is the main metric from the a composite metric that integrates sen-

tence length, word rarity, and syntactic structure. This score is derived from a similar

procedure using Bradley Terry models of pairwise comparisons of textual snippets that we

use. Increasing values in this variable increase the relative “difficulty” of a given comparison.

We also utilize a separated version of this score through much the same variables as Benoit

et al. (2019) and Senninger (2023). The first variable in this separated measure, the Google

Mean Score, calculates word rarity using average frequencies from the Google Books N-gram

corpus, where less frequent words contribute to higher scores. The second measure, the

Proportion of Nouns, evaluates the ratio of nouns to total words in the text, with a higher

proportion of nouns indicating greater complexity and abstractness.

Additionally, we include two supplementary measures: Mean Sentence Length, which

captures the average number of words per sentence and reflects syntactic complexity, and

Mean Word Syllables, which measures the average syllables per word as an indicator of
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vocabulary sophistication. These metrics together provide a robust framework for evaluating

textual sophistication, allowing for nuanced comparisons of complexity across different texts.

In addition to the previously mentioned metrics, we incorporate three additional mea-

sures to enhance our assessment of textual sophistication. First, we utilize the Flesch-Kincaid

Readability Grade Level, a widely recognized metric that evaluates text readability by con-

sidering average sentence length and average syllables per word. This formula assigns a U.S.

school grade level, indicating the minimum education required to comprehend the text Flesch

(1948). Second, we count the number of references to the U.S. Code within each section.

This quantifies the extent to which a bill section is interconnected with existing legislation,

reflecting its integration into the broader corpus of American law. This is comparable to

Senninger (2023) using references in his study, though applied for the American context.

Finally, we include a binary indicator denoting whether a section delegates authority to an

administrative agency. This measure is derived from the methodology outlined by Buss-

ing et al. (2022) who employed deep and active learning classifiers to identify instances of

congressional delegation to administrative agencies.

These additional metrics provide a comprehensive framework for evaluating textual

sophistication, capturing various dimensions of complexity and legislative intent. Each cap-

tures an underlying dimension of textual sophistication or a separate component of this, with

the possibility that the contents and intent of a section capture separate factors.

5 Results

We present the results of our first set of comparisons in Table 1. This table contains the hu-

man classifications of the comparisons underlying the Bradley-Terry models. As a reminder,

we have 625 comparisons.7 Each model uses different textual measures of complexity to

assess both the effectiveness of human coders in identifying complex texts and the strength

7While we fielded more than 625 pairwise comparisons, we subset our data to only include sections that
showed up in at least 5 comparisons. This process yielded 625 pairwise comparisons.
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of the relationship between the textual measures and the latent trait of complexity. For each

of these results, the model is predicting the simplicity, or the ease with which a human would

be able to read and understand a given document. Coefficients capture the relationship be-

tween each covariate and the likelihood that a given text is selected as easier to understand

in any given pairwise comparison.

Table 1: Bradley Terry Models using Human classification

BT 1 BT 2 BT 3 BT 4 BT 5 BT 6

BMS Score 0.315*** 0.213* 0.216**
(0.090) (0.095) (0.098)

Mean Sentence Length 0.000
(0.001)

Mean Word Syllables 4.157***
(0.531)

Google Mean Score 39.573***
(3.476)

Proportion Nouns 2.097
(1.893)

Flesch Kincaid −0.009***
(0.002)

U.S.C. count −0.200*** −0.162*** −0.173***
(0.046) (0.046) (0.047)

Delegation? 0.132
(0.115)

Num.Obs. 625 625 625 625 625 625
AIC 855.6 656.0 852.0 844.4 841.5 847.0
BIC 860.0 673.8 856.4 848.8 850.3 900.3
RMSE 0.49 0.41 0.49 0.49 0.49 0.48

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Dependent variable is the outcome of each pairwise comparison. Observations are comparisons
between one of five bridging comparison sets and a randomly selected comparison text.

We see a very consistent story with the human classification models. For the BMS score,

which is the aggregate textual ease score, we observe a strong relationship in predicting

which text will be selected in the binary, parallelized comparisons. This is evident in Model

BT1. For Model BT2, we examine the same components broken out, finding that Mean

Word Syllables—the average number of syllables per word—and the Google Mean Score
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are the most significant predictors. In Model BT3, the Flesch-Kincaid Score is negatively

associated with text simplicity, aligning with expectations. Similarly, in Models BT4, BT5,

and BT6, the counts of references to the U.S. Code emerge as significant predictors. As

the number of references increases, the text becomes more complex, a result consistent even

when controlling for the aggregate measure of text complexity. However, we do not find

a significant relationship between predicted delegation to administrative agencies and text

complexity in the human classification set.

Next, we move on to the set of results replicating the same procedure using GPT 4.0

instead of human coders.

Table 2: Bradley Terry Models using LLM classification

BT LLM 1 BT LLM 2 BT LLM 3 BT LLM 4 BT LLM 5 BT LLM 6

BMS Score 0.258** 0.160+ 0.276**
(0.089) (0.094) (0.099)

Mean Sentence Length −0.001
(0.001)

Mean Word Syllables 2.601***
(0.478)

Google Mean Score 29.215***
(2.952)

Proportion Nouns −1.756
(1.783)

Flesch Kincaid −0.007**
(0.002)

U.S.C. count −0.183*** −0.155*** −0.164***
(0.045) (0.046) (0.046)

Delegation? 0.591***
(0.120)

Num.Obs. 625 625 625 625 625 625
AIC 859.7 714.5 857.2 847.5 846.7 806.9
BIC 864.2 732.2 861.6 852.0 855.6 860.1
RMSE 0.50 0.43 0.50 0.49 0.49 0.47

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Dependent variable is the outcome of each pairwise comparison. Observations are comparisons
between one of five bridging comparison sets and a randomly selected comparison text.

In this set of results, seen in Table 2, we observe that most relationships are stronger
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than those in Table 1. For the BMS score, which is the aggregate textual ease score, the

coefficients are similar, though slightly smaller. For Model BT2, the Mean Word Syllables

and the Google Mean Score remain the strongest predictors. In Model BT3, the negative

association between the Flesch-Kincaid Score and text simplicity is consistent with the first

set of results. Similarly, for Models BT4, BT5, and BT6, the counts of references to the U.S.

Code show a more pronounced effect, with increasing counts corresponding to higher levels

of textual complexity, even when controlling for the aggregate measure of text complexity.

We also observe a significant relationship between predicted delegation to administrative

agencies and text complexity, though inverse – when controlling for observed textual reading

ease, sections that delegate are more likely to be chosen by the LLM as easier to understand.

This may be a function of what bill sections that are not delegating are likely doing –

something worth thinking about some more.

For the final set of models, shown in Table 3, we look now at the unstructured com-

parisons between all bill sections evaluated by the LLM. We do not use our fixed reference

points here and just use random comparisons – but also use a much larger set of bills. We

find no real relationship between any of our substantive variables and the modeled pairwise

comparisons. We find the lack of a relationship here to be indicative that the structuring

of the pairwise comparisons matters significantly for the identification of the model. This

insight suggests that relative anchoring points are critical for the validity of our measure-

ment model. This is a well-known feature of many issues in unidimensional scaling and

latent trait modeling. It is encouraging to observe that the same logic applies to LLM-based

coding.This insight, of course, is prominently discussed in the literature on modeling ideal

points in Congress, particularly in the seminal works of Poole & Rosenthal (2000), as well as

Clinton et al. (2004) among many others. These studies emphasize the importance of anchor-

ing and comparative structure in developing robust scaling models, providing a theoretical

foundation that aligns well with our findings.
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Table 3: Bradley Terry Models using LLM classification: all docs

BT LLM 1 BT LLM 2 BT LLM 3 BT LLM 4 BT LLM 5 BT LLM 6

BMS Score −0.033* −0.034* −0.032*
(0.013) (0.013) (0.013)

Mean Sentence Length 0.000*
(0.000)

Mean Word Syllables 0.020
(0.057)

Google Mean Score 0.110
(0.277)

Proportion Nouns −0.014
(0.217)

Flesch Kincaid 0.001*
(0.000)

U.S.C. count −0.009 −0.010 −0.012
(0.009) (0.009) (0.009)

Delegation? 0.011
(0.019)

Num.Obs. 22 425 22 425 22 425 22 425 22 425 22 425
AIC 31 083.3 31 089.2 31 083.3 31 088.6 31 084.1 31 065.0
BIC 31 091.4 31 121.2 31 091.3 31 096.6 31 100.1 31 361.6
RMSE 0.50 0.50 0.50 0.50 0.50 0.50

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Dependent variable is the outcome of each pairwise comparison. Observations are comparisons
between one of five bridging comparison sets and a randomly selected comparison text.

6 Discussion

This paper has investigated the capacity of LLMs to capture and understand legislative

complexity. Through a Bradley-Terry model structure, we find that increase in the scale de-

signed by Benoit et al. (2019) has a statistically significant effect on the comparison between

sections across nearly all models where it is included, only falling under a standard definition

of statistical significance in one model in 2. The components of this measure have largely

consistent findings in column 2 Tables 1 and 2, especially for Mean Word Syllables and

Google Mean Score. Reading Ease in column 3 of those same tables produces nearly identi-

cal effects across human and LLM models, as does the U.S.C. count in columns 4 through 6.

The largest difference we find between human coders in Table 1 and LLM models in Table
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2 is the effect of a section delegating authority, as the LLM model found a statistically and

substantively strong effect for this covariate while the human coders found no such relation-

ship. However, we find either reversed effects for our statistically significant covariates in

Tables 1 and 2 in Table 3 or no effect at all where we observed a strong relationship in the

earlier models.

In total, we find that LLM structures can be designed to function similar to guided

human coders. We see nearly identical effects for guided LLMs and human coders with the

exception of delegation, lending credence to the power of this tool to undertake complexity

as a measurement exercise. However, we find that unguided LLMs cannot independently

capture complexity in a more general sense. Thus, our exploration agrees with Kirsten

et al. (2024) that LLM-based coding methodology has limitations. However, we also agree

with them that with human controls and input LLM coding may provide a fruitful way to

understand coding complex phenomena.

This project illustrates the potential for LLMs as research devices as well as the poten-

tial pitfalls. We see that LLMs can indeed capture complexity in a fashion similar to human

coders, but cannot independently develop a sense of complexity in legislative language. Fu-

ture research should investigate the outer limits of LLM-based approaches, but with these

initial findings we offer evidence that with oversight and input training LLMs can indeed

capture complexity.
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